分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用分式函數(shù)的性質(zhì),以及斜率的幾何意義進(jìn)行求解即可.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:則A(2,0),
z=$\frac{2y+4}{x+1}$=2•$\frac{y+2}{x+1}$,
設(shè)k=$\frac{y+2}{x+1}$,則k的幾何意義為區(qū)域內(nèi)的點(diǎn)到定點(diǎn)D(-1,-2)的斜率,
由圖象知OD的斜率最大,為k=$\frac{-2}{-1}=2$,
AD的斜率最小,為k=$\frac{0+2}{2+1}$=$\frac{2}{3}$,
即$\frac{2}{3}$≤k≤2,
則$\frac{4}{3}$≤2k≤4,
即$\frac{4}{3}$≤z≤4,
故z=$\frac{2y+4}{x+1}$的取值范圍是[$\frac{4}{3}$,4]
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用以及直線斜率的求解,利用分式函數(shù)的性質(zhì)結(jié)合斜率的幾何意義是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1-e | B. | e-1 | C. | -1-e | D. | e+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 15 | B. | 20 | C. | 30 | D. | 35 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com