17.如圖為某幾何體的三視圖,則該幾何體的體積為( 。
A.10πB.$\frac{26}{3}π$C.$\frac{56}{3}π$D.24π

分析 由三視圖可知,原幾何體是組合體,下面是底面半徑為2,高為2的圓柱,上面是底面半徑為1,高為1的圓錐,然后代入圓柱和圓錐的體積公式得答案.

解答 解:由三視圖可知,原幾何體是組合體,下面是底面半徑為2,高為2的圓柱,上面是底面半徑為1,高為1的圓錐,
則其體積為V=$π×{2}^{2}×2+\frac{1}{3}π×{1}^{2}×2=\frac{26π}{3}$.
故選:B.

點評 本題考查由三視圖求幾何體的體積,關(guān)鍵是由三視圖抽象出原圖形,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(文科做)已知函數(shù)f(x)=x-$\frac{2a}{x}$-(a+2)lnx,其中實數(shù)a≥0.
(1)若a=0,求函數(shù)f(x)在x∈[1,3]上的最值;
(2)若a>0,討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知拋物線y2=2px(p>0)過定點A(1,1),B,C是拋物線上異于A的兩個動點,且AB⊥AC.
(Ⅰ)求拋物線的方程;
(Ⅱ)求證:直線BC恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若拋物線x2=-2py(p>0)的焦點到準線的距離為1,則拋物線方程為x2=-2y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù):f(x)=lnx-ax+1(a≠0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若對于任意的a∈[$\frac{1}{2}$,2],若函數(shù)g(x)=x3+$\frac{{x}^{2}}{2}$[m-2f′(x)]+3在區(qū)間(a,4)上有最值,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.傾斜角為$\frac{π}{3}$的直線經(jīng)過拋物線x2=2py的焦點,交拋物線于A,B兩點,若三角形OAB的面積為4,其中O為坐標原點,則p=±2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知拋物線C:y2=4x的交點為F,直線y=x-1與C相交于A,B兩點,與雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=2(a>0,b>0)的漸近線相交于M,N兩點,若線段AB與MN的中點相同,則雙曲線E的離心率為$\frac{\sqrt{15}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知某池塘養(yǎng)殖著鯉魚和鯽魚,為了估計這兩種魚的數(shù)量,養(yǎng)殖者從池塘中捕出這兩種魚各1 000條,給每條魚做上不影響其存活的標記,然后放回池塘,待完全混合后,再每次從池塘中隨機地捕出1 000條魚,記錄下其中有記號的魚的數(shù)目,立即放回池塘中.這樣的記錄做了10次,并將記錄獲取的數(shù)據(jù)制作成如圖的莖葉圖.

(1)根據(jù)莖葉圖計算有記號的鯉魚和鯽魚數(shù)目的平均數(shù),并估計池塘中的鯉魚和鯽魚的數(shù)量;
(2)為了估計池塘中魚的總重量,現(xiàn)按照(1)中的比例對100條魚進行稱重,根據(jù)稱重魚的重量介于[0,4.5](單位:千克)之間,將測量結(jié)果按如下方式分成九組:第一組[0,0.5),第二組[0.5,1),…,第九組[4,4.5].如圖是按上述分組方法得到的頻率分布直方圖的一部分.
①估汁池塘中魚的重量在3千克以上(含3千克)的條數(shù);
②若第三組魚的條數(shù)比第二組多7條、第四組魚的條數(shù)也比第三組多7條,請將頻率分布直方圖補充完整;
③在②的條件下估計池塘中魚的重量的眾數(shù)及池塘中魚的總重量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.過圓C:(x-1)2+(y-1)2=1的圓心,作直線分別交x軸、y軸的正半軸于A、B兩點,△AOB被圓分成四部分(如圖),若這四部分圖形的面積滿足S1+S4=S2+S3,則直線AB有( 。
A.1條B.2條C.3條D.0條

查看答案和解析>>

同步練習(xí)冊答案