分析 (1)根據(jù)函數(shù)圖象分別求出A,ω,φ的值,可得函數(shù)的解析式;
(2)結(jié)合(1)中函數(shù)的解析式,結(jié)合正弦函數(shù)的對(duì)稱性,可得函數(shù)圖象的對(duì)稱軸方程.
解答 解:(1)∵函數(shù)的最大值為2,A>0,
∴A=2,
結(jié)合函數(shù)圖象過(0,1)點(diǎn)可得sinφ=$\frac{1}{2}$,
∵|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$,
結(jié)合函數(shù)第五點(diǎn)坐標(biāo)為($\frac{11π}{12}$,0),
由$\frac{11π}{12}$ω+$\frac{π}{6}$=2π得,
ω=2,
故f(x)=2sin(2x+$\frac{π}{6}$);
(2)由2x+$\frac{π}{6}$=$\frac{π}{2}$+2kπ,(k∈Z),
得:x=$\frac{π}{6}$+kπ,(k∈Z),
故函數(shù)圖象的對(duì)稱軸方程為:x=$\frac{π}{6}$+kπ,(k∈Z).
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是正弦型函數(shù)的圖象和性質(zhì),熟練掌握正弦型函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (e,3e) | B. | (-3e,-e) | C. | (1,3e) | D. | (-3e,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第6項(xiàng) | B. | 第7項(xiàng) | C. | 第8項(xiàng) | D. | 第9項(xiàng) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P、A、C三點(diǎn)共線 | B. | P、A、B三點(diǎn)共線 | C. | P、B、C三點(diǎn)共線 | D. | 以上均不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $-\sqrt{3}$ | C. | -1 | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com