分析 根據(jù)定義在R上的奇函數(shù)f(0)=0,求出b值,利用f(2)=-1,求出a,再由f(-6)=-f(6)得到答案.
解答 解:∵函數(shù)f(x)為定義在R上的奇函數(shù),
∴f(0)=1+b=0,
解得:b=-1,
∴當(dāng)x≥0時(shí),f(x)=log2(x+2)+(a-1)x-1,
∵f(2)=-1,
∴f(2)=2+2(a-1)-1=-1,
∴a=0
∴f(x)=log2(x+2)-x-1,
∴f(-6)=-f(6)=4.
故答案為:4.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性的性質(zhì),熟練掌握函數(shù)奇偶性的定義和性質(zhì),是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2\sqrt{2}}{3}$ | B. | $\frac{\sqrt{10}}{3}$ | C. | $\sqrt{10}$ | D. | $\frac{2\sqrt{390}}{39}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | e2=$\frac{2}{1-4^{2}}$ | B. | e2=$\frac{1}{1-4^{2}}$ | C. | e2=$\frac{1+4^{2}}{1-4^{2}}$ | D. | e2=1-4b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-4,2] | B. | (-4,2) | C. | (0,2) | D. | (0,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com