10.已知拋物線y2=-4$\sqrt{2}$x的焦點到雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=l(a>0,b>0)的一條漸近線的距離為$\frac{\sqrt{5}}{5}$,則該雙曲線的離心率為( 。
A.$\frac{2\sqrt{2}}{3}$B.$\frac{\sqrt{10}}{3}$C.$\sqrt{10}$D.$\frac{2\sqrt{390}}{39}$

分析 求出拋物線的焦點坐標(biāo),寫出雙曲線的漸近線方程,利點到直線的距離列出關(guān)系式即可求出雙曲線的離心率.

解答 解:拋物線y2=-4$\sqrt{2}$x的焦點(-$\sqrt{2}$,0),雙曲線的漸近線為:y=±$\frac{a}$x,
拋物線y2=-4$\sqrt{2}$x的焦點到雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=l(a>0,b>0)的一條漸近線的距離為$\frac{\sqrt{5}}{5}$,
可得:$\frac{\left|\sqrt{2}b\right|}{\sqrt{{a}^{2}+^{2}}}$=$\frac{\sqrt{5}}{5}$,即9b2=a2,即9c2-9a2=a2
解得e=$\frac{\sqrt{10}}{3}$.
故選:B.

點評 本題考查拋物線的簡單性質(zhì)與雙曲線的簡單性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.(1+x+x2)(x-$\frac{1}{x}$)6的展開式中的常數(shù)項為m,則函數(shù)y=-x2與y=mx的圖象所圍成的封閉圖形的面積為( 。
A.$\frac{625}{6}$B.$\frac{250}{6}$C.$\frac{375}{6}$D.$\frac{125}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點A(1,0),B(6,2)和向量$\overrightarrow{a}$=(2,λ),若$\overrightarrow{a}$∥$\overrightarrow{AB}$,則實數(shù)λ的值為( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{7}{2}$D.-$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平面直角坐標(biāo)系xOy中,已知直線l:x+y-3=0和圓M:x2+(y-m)2=8,若圓M上存在點P,使得P到直線l的距離為3$\sqrt{2}$,則實數(shù)m的取值范圍是[-7,1]∪[5,13].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)a=log0.32,b=20.3,c=0.30.4,則 a、b、c的大小關(guān)系是( 。
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等差數(shù)列{an}滿足a3+a9=2,則a6=( 。
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.定義在R上的奇函數(shù)f(x)滿足當(dāng)x≥0時,f(x)=log2(x+2)+(a-1)x+b(a,b為常數(shù)),若f(2)=-1,則f(-6)的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知tanx=$\frac{1}{2}$,則sin2($\frac{π}{4}$+x)=( 。
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{3}{5}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知sin200°=a,則tan160°等于(  )
A.-$\frac{a}{\sqrt{1-{a}^{2}}}$B.$\frac{a}{\sqrt{1-{a}^{2}}}$C.-$\frac{\sqrt{1-{a}^{2}}}{a}$D.$\frac{\sqrt{1-{a}^{2}}}{a}$

查看答案和解析>>

同步練習(xí)冊答案