A. | 2+$\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{3}$-1 | D. | 1 |
分析 先求出射線l的直角坐標(biāo)方程,再分別求出射線l與⊙o1的交點(diǎn)A的坐標(biāo)和射線l與⊙o2的交點(diǎn)B的坐標(biāo),最后利用兩點(diǎn)間距離公式求出答案.
解答 解:∵射線l:θ=$\frac{π}{3}$(ρ>0),
∴射線l的直角坐標(biāo)方程y=$\sqrt{3}$x(x>0,y>0),
聯(lián)立$\left\{\begin{array}{l}{y=\sqrt{3}x}\\{(x-1)^{2}+{y}^{2}=1}\end{array}\right.$,解得x=0或$\frac{1}{2}$(舍去0)
∴x=$\frac{1}{2}$,y=$\frac{\sqrt{3}}{2}$.∴射線l與⊙o1的交點(diǎn)A為($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)
聯(lián)立$\left\{\begin{array}{l}{y=\sqrt{3}x}\\{{x}^{2}+(y-2)^{2}=4}\end{array}\right.$,解得x=0或$\sqrt{3}$(舍去0)
∴x=$\sqrt{3}$,y=3.∴射線l與⊙o2的交點(diǎn)B為($\sqrt{3}$,3).
∴|AB|=$\sqrt{(\sqrt{3}-\frac{1}{2})^{2}+(3-\frac{\sqrt{3}}{2})^{2}}$=$\sqrt{13-4\sqrt{3}}$=2$\sqrt{3}$-1.
故選:C.
點(diǎn)評(píng) 本題考查極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程,考查兩點(diǎn)間距離公式,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{11}{2}$ | B. | $\frac{11}{2}$ | C. | -$\frac{29}{2}$ | D. | $\frac{29}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(0,\frac{1}{2})$ | B. | (0,+∞) | C. | $(\frac{1}{2},+∞)$ | D. | $(-∞,\frac{1}{2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 243 | B. | 81 | C. | 128 | D. | 64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com