6.如圖,在⊙O的內(nèi)接五邊形ABCDE中,∠CAD=40°,則∠B+∠E=220°.

分析 連接CE,根據(jù)圓內(nèi)接四邊形對角互補(bǔ)可得∠B+∠AEC=180°,再根據(jù)同弧所對的圓周角相等可得∠CED=∠CAD,然后求解即可.

解答 解:如圖,連接CE,
∵五邊形ABCDE是圓內(nèi)接五邊形,
∴四邊形ABCE是圓內(nèi)接四邊形,
∴∠B+∠AEC=180°,
∵∠CED=∠CAD=40°,
∴∠B+∠E=180°+40°=220°.
故答案為:220.

點(diǎn)評 本題考查了圓內(nèi)接四邊形的性質(zhì),同弧所對的圓周角相等的性質(zhì),熟記性質(zhì)并作輔助線構(gòu)造出圓內(nèi)接四邊形是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.向量|$\overrightarrow{a}$=3,|$\overrightarrow$|=$\sqrt{3}$,<$\overrightarrow{a}$,$\overrightarrow$>=30°,則$\overrightarrow{a}$•$\overrightarrow$=( 。
A.3B.$\sqrt{3}$C.$\frac{9}{2}$D.$\frac{9}{2}$$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若a>1,則1+$\frac{\sqrt{(1-a)^{2}}}{a-1}$的值是( 。
A.1B.2C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)同在一個(gè)平面上的動(dòng)點(diǎn)P,Q的坐標(biāo)分別是(x,y),(X,Y)并且坐標(biāo)間存在關(guān)系X=3x+2y-1,Y=3x+2y+1,當(dāng)動(dòng)點(diǎn)P在不平行于坐標(biāo)軸的直線l上移動(dòng)時(shí),動(dòng)點(diǎn)Q在與這直線l垂直且通過點(diǎn)(2,1)的直線上移動(dòng),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,平行四邊形ABCD中,∠DAB=60°,AB=2,AD=4將△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD
(Ⅰ)求證:AB⊥DE
(Ⅱ)求二面角B-AE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.一棱柱有10個(gè)頂點(diǎn),且所有側(cè)棱長之和為100,則其側(cè)棱長為( 。
A.10B.20C.5D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,CD=$\sqrt{3}$,點(diǎn)E是線段AB的中點(diǎn),G為CD的中點(diǎn),現(xiàn)沿ED將△AED折起到△PED位置,使PE⊥EB.
(1)求證:平面PEG⊥平面PCD;
(2)求點(diǎn)A到平面PDC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.畫出下列函數(shù)的圖象.
(1)y=x+1(|x|≤2且x∈Z)
(2)$y=\frac{|x|}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)=\frac{{{e^x}-a}}{{{e^x}+1}}$是奇函數(shù).
(1)求實(shí)數(shù)a的值.
(2)判斷f(x)在R上的單調(diào)性,并用定義證明.
(3)是否存在實(shí)數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對一切x∈[1,2]恒成立?若存在,求出t的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案