3.若a>1,則1+$\frac{\sqrt{(1-a)^{2}}}{a-1}$的值是( 。
A.1B.2C.0D.-1

分析 根據(jù)a的范圍,去掉根號,從而化簡出結(jié)果即可.

解答 解:若a>1,
則1+$\frac{\sqrt{(1-a)^{2}}}{a-1}$
=1+$\frac{|1-a|}{a-1}$
=1+$\frac{a-1}{a-1}$
=2,
故選:B.

點評 本題考察了根式的化簡求值問題,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

13.設(shè)x0為函數(shù)f(x)=sinπx的零點,且滿足|x0|+f(x0+$\frac{1}{2}$)<33,則這樣的零點有65個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,F(xiàn)是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點,O是坐標原點,|OF|=$\sqrt{5}$,過F作OF的垂線交橢圓于P0,Q0兩點,△OP0Q0的面積為$\frac{4\sqrt{5}}{3}$.
(1)求該橢圓的標準方程;
(2)若直線l與上下半橢圓分別交于點P、Q,與x軸交于點M,且|PM|=2|MQ|,求△OPQ的面積取得最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx,φ(x)=$\frac{a}{x+1}$,a為正常數(shù).
(1)函數(shù)y=f(x)的圖象上任意不同的兩點A(x1,y1),B(x2,y2),線段AB的中點為C(x0,y0),記直線AB的斜率為k,試證明:k>f′(x0);
(2)若g(x)=|f(x)|+φ(x),且對任意的x1,x2∈(0,2],且x1≠x2,都有$\frac{g({x}_{2})-g({x}_{1})}{{x}_{2}-{x}_{1}}$<-1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.若U={1,2,3,4},A={1},B⊆∁UA,寫出滿足條件的集合B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設(shè)$\overrightarrow{a}$,$\overrightarrow$,|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=$\sqrt{2}$,若$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$的夾角為45°,則|$\overrightarrow{a}$+$\overrightarrow$|=x=$\frac{\sqrt{6}±\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.過點B(3,4)作直線,使之與點A(1,1)的距離為2,求該直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如圖,在⊙O的內(nèi)接五邊形ABCDE中,∠CAD=40°,則∠B+∠E=220°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=|2x-1|.
(1)在給出的坐標系中作出y=f(x)的圖象(若有漸近線,把漸近線畫成虛線);
(2)若集合{x|f(x)=a}中恰有兩個元素,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案