分析 由條件利用線段的中點(diǎn)公式求得各邊的中點(diǎn)坐標(biāo)、再利用兩點(diǎn)式求出各邊上的中線所在的直線方程.
解答 解:線段AB的中點(diǎn)為(-$\frac{1}{2}$,-$\frac{1}{2}$),故AB邊上中線所在的直線方程為 $\frac{y+\frac{1}{2}}{3+\frac{1}{2}}$=$\frac{x+\frac{1}{2}}{-2+\frac{1}{2}}$,即 7x+3y+2=0.
線段BC的中點(diǎn)為(0,1),故BC邊上中線所在的直線方程為$\frac{y-1}{0-1}$=$\frac{x-0}{-3-0}$,即x-3y+3=0.
線段AC的中點(diǎn)為(-$\frac{5}{2}$,$\frac{3}{2}$),故AC邊上中線所在的直線方程為$\frac{y-\frac{3}{2}}{-1-\frac{3}{2}}$=$\frac{x+\frac{5}{2}}{2+\frac{5}{2}}$,即 5x+9y-1=0.
點(diǎn)評(píng) 本題主要考查線段的中點(diǎn)公式、用兩點(diǎn)式求直線的方程,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{3}$,1) | B. | (-$\frac{1}{3}$,+∞) | C. | (-$\frac{1}{3}$,$\frac{1}{3}$) | D. | (-∞,-$\frac{1}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,0] | C. | (0,+∞) | D. | (-∞,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com