2.若f(θ)=$\frac{{2sin}^{2}\frac{θ}{2}-1}{sin\frac{θ}{2}cos\frac{θ}{2}}$+2tanθ,則f($\frac{π}{8}$)等于( 。
A.0B.2C.-2D.-4

分析 利用二倍角的正弦函數(shù),余弦函數(shù)公式化簡已知,利用特殊角的三角函數(shù)值即可計算得解.

解答 解:∵f(θ)=$\frac{{2sin}^{2}\frac{θ}{2}-1}{sin\frac{θ}{2}cos\frac{θ}{2}}$+2tanθ=$\frac{-cosθ}{\frac{1}{2}sinθ}$+$\frac{2sinθ}{cosθ}$=$\frac{2(si{n}^{2}θ-co{s}^{2}θ)}{sinθcosθ}$=-$\frac{4cos2θ}{sin2θ}$,
∴f($\frac{π}{8}$)=-$\frac{4cos\frac{π}{4}}{sin\frac{π}{4}}$=-4.
故選:D.

點評 本題主要考查了二倍角的正弦函數(shù),余弦函數(shù)公式,特殊角的三角函數(shù)值在三角函數(shù)化簡求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知實數(shù)x,y滿足不等式組$\left\{{\begin{array}{l}{x≥1}\\{x+y-4≤0}\\{ax-y-2≤0}\end{array}}\right.$,若實數(shù)$a=\frac{1}{2}$,則不等式組表示的平面區(qū)域的面積為27;若目標(biāo)函數(shù)z=4x+3y的最大值為15,則實數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知點O是四邊形ABCD所在平面外任意一點,且$\overrightarrow{OD}$=2$\overrightarrow{OA}$+x$\overrightarrow{OB}$-y$\overrightarrow{OC}$(x,y∈R),則x2+y2的最小值為( 。
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)是定義在R上的奇函數(shù),且在區(qū)間[0,+∞)上是增函數(shù),則不等式$\frac{|f(lnx)-f(ln\frac{1}{x})|}{2}$<f(1)的解集為( 。
A.(0,$\frac{1}{e}$)B.(0,e)C.($\frac{1}{e}$,e)D.(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,若b2-c2-a2=-ac,則B等于( 。
A.120°B.30°或150°C.45°D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{0}$,($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{c}$,$\overrightarrow{a}$⊥$\overrightarrow$,且|$\overrightarrow{a}$|=1,求$\overrightarrow$2+$\overrightarrow{c}$2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}中,a1=1,a2=2,an+2=an+1-an,試寫出a3,a4,a5,a6,a7,a8,你發(fā)現(xiàn)數(shù)列{an}具有怎樣的規(guī)律?你能否求出該數(shù)列中的第2014項是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若正數(shù)a,b滿足log2a=log5b=1g(a+b),則$\frac{1}{a}$$+\frac{1}$的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某同學(xué)在研究函數(shù)f(x)=$\frac{x}{1+|x|}$(x∈R)時,得到一下四個結(jié)論:
①f(x)的值域是(-1,1);
②對任意x∈R,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0;
③若規(guī)定f1(x)=f(x),fn+1(x)=f(fn(x)),則對任意的n∈N*,fn(x)=$\frac{x}{1+n|x|}$;
④對任意的x∈[-1,1],若函數(shù)f(x)≤t2-2at+$\frac{1}{2}$恒成立,則當(dāng)a∈[-1,1]時,t≤-2或t≥2,
其中正確的結(jié)論是①②③(寫出所有正確結(jié)論的序號).

查看答案和解析>>

同步練習(xí)冊答案