14.由1,2,3,4,5可以組成多少個(gè)沒有重復(fù)數(shù)字的自然數(shù)?

分析 本題是一個(gè)分類計(jì)數(shù)問題,分類討論,根據(jù)分類計(jì)數(shù)原理得到結(jié)果.

解答 解:由題意知本題是一個(gè)分類計(jì)數(shù)問題,
當(dāng)自然數(shù)是一位數(shù)時(shí),共有5個(gè),
當(dāng)自然數(shù)是兩位數(shù)是有A52=20個(gè),
當(dāng)自然數(shù)是3位數(shù)時(shí)有A53=60個(gè),
當(dāng)自然數(shù)是4位數(shù)時(shí)有A54=120個(gè),
當(dāng)自然數(shù)是5位數(shù)時(shí)有A55=120個(gè),
∴根據(jù)分類計(jì)數(shù)原理知共有5+20+60+120+120=325個(gè).

點(diǎn)評(píng) 本題考查分類計(jì)數(shù)問題,是一個(gè)數(shù)字問題,這種問題一般做起來比較麻煩,注意分類過程中做到不重不漏.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a10=30,S5=80.
(1)求通項(xiàng)an
(2)若Sn=242,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,點(diǎn)A關(guān)于直線0B的對(duì)稱點(diǎn)為C,則$\overrightarrow{OC}$可表示為( 。
A.$\frac{(\overrightarrow{a}•\overrightarrow)\overrightarrow{a}}{|\overrightarrow{|}^{2}}$-$\overrightarrow$B.$\frac{2(\overrightarrow{a}•\overrightarrow)\overrightarrow}{|\overrightarrow{|}^{2}}$-$\overrightarrow{a}$C.$\frac{(\overrightarrow{a}•\overrightarrow)\overrightarrow{a}}{|\overrightarrow{a}{|}^{2}}$$-\overrightarrow$D.$\frac{2(\overrightarrow{a}•\overrightarrow)\overrightarrow{a}}{|\overrightarrow{a}{|}^{2}}$$-\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y≤0}\\{y-2≤0}\end{array}\right.$,設(shè)z=2x+y,則z的取值范圍是[2,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求下列函數(shù)的導(dǎo)數(shù):
(1)y=(ax+b)n
(2)y=xasinx-$\frac{2}{cosx}$.
(3)y=xsin2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)己知某物體水平運(yùn)動(dòng),位移S與時(shí)間t滿足;S(t)=-t2+10t.
①求物體在1到2秒間的平均速度;
②求物體在1到1+△t秒間的平均速度;
③求物體在1秒時(shí)的瞬時(shí)速度;
(2)求函數(shù)f(x)=-x2+10x在x=1處的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,若tanA:tanB:tanC=1:2:3,則tanA=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知△ABC中,a=2,B=45°,cosA=$\frac{3}{5}$,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn).
(1)求三棱錐P-ACD的體積;
(2)求點(diǎn)D到平面PAC的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案