分析 (1)利用x∈(0,+∞),可得函數(shù)非奇非偶;
(2)求出函數(shù)的解析式,利用導(dǎo)數(shù),研究函數(shù)的單調(diào)性.
解答 解:(1)∵f(x)=x-$\frac{1}{{x}^{m}}$,x∈(0,+∞),且f(3)=$\frac{8}{3}$,
∴3-$\frac{1}{{3}^{m}}$=$\frac{8}{3}$,
∴m=1,
∴f(x)=x-$\frac{1}{x}$,
∵x∈(0,+∞),
∴函數(shù)非奇非偶;
(2)f′(x)=1-$\frac{1}{{x}^{2}}$,
∴x∈(0,1),f′(x)<0,x∈(1,+∞),f′(x)>0,
∴函數(shù)的單調(diào)減區(qū)間是(0,1),單調(diào)增區(qū)間是(1,+∞).
點評 本題考查函數(shù)的單調(diào)性、奇偶性,考查函數(shù)解析式的確定,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com