11.若直線y=x+m與曲線y=$\sqrt{4x-{x^2}}$有公共點,則m的取值范圍是[-4,2$\sqrt{2}$-2].

分析 曲線y=$\sqrt{4x-{x^2}}$表示以點(2,0)為圓心,2為半徑的圓的上半圓,而直線y=x+m的斜率為1,截距為m,在同一個坐標(biāo)系中作出它們的圖象,數(shù)形結(jié)合可得.

解答 解:y=$\sqrt{4x-{x^2}}$整理可得(x-2)2+y2=4,
故曲線y=$\sqrt{4x-{x^2}}$表示以點(2,0)為圓心,2為半徑的圓的上半圓,
而直線y=x+m的斜率為1,截距為m,在同一個坐標(biāo)系中作出它們的圖象:
直線與曲線相切可得$\frac{|2+m|}{\sqrt{2}}$=2,解得m=2$\sqrt{2}$-2,或m=-2$\sqrt{2}$-2,(舍去)
直線過點(4,0),m=-4
故直線y=x+m與曲線y=$\sqrt{4x-{x^2}}$有公共點,m的取值范圍是[-4,2$\sqrt{2}$-2].
故答案為:[-4,2$\sqrt{2}$-2]

點評 本題考查直線與圓相交的性質(zhì),數(shù)形結(jié)合是解決問題的關(guān)鍵,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知:a,b,c∈(-∞,0),求證:a+$\frac{1}$,b+$\frac{1}{c}$,c+$\frac{1}{a}$中至少有一個不大于-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=1008xln(e4x+1)-2016x2+1,f(a)=2,則f(-a)的值為( 。
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)=Asin(2x+ϕ),(A>0,|ϕ|<$\frac{π}{2}}$),對任意x都有f(x)≤f($\frac{π}{6}}$)=2,則g(x)=Acos(2x+ϕ)在區(qū)間[0,$\frac{π}{2}$]上的最大值與最小值的乘積為( 。
A.$-2\sqrt{3}$B.$-\sqrt{3}$C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知i是虛數(shù)單位,則復(fù)數(shù)z=$\frac{1-i}{2i+1}$的共軛復(fù)數(shù)的模是( 。
A.$\frac{{2\sqrt{2}}}{5}$B.$\frac{{\sqrt{7}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.《九章算術(shù)》有這樣一個問題:今有男子善走,日增等里,九日走一千二百六十里,第一日、第四日、第七日所走之和為三百九十里,問第六日所走時數(shù)為(  )
A.140B.150C.160D.170

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x+y-1≤0\\ 2x-y+1≥0\\ y≥-1\end{array}\right.$,則2x+y的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示的幾何體中,ABC-A1B1C1為三棱柱,且AA1⊥平面ABC,四邊形ABCD為平行四邊形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求證:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A-C1D-C的余弦值為$\frac{{\sqrt{5}}}{5}$,求三棱錐C1-A1CD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在正方體ABCD-A1B1C1D1的各個頂點與各棱的中點共20個點中,任取2點連成直線,在這些直線中任取一條,它與對角線BD1垂直的概率為( 。
A.$\frac{27}{190}$B.$\frac{12}{166}$C.$\frac{15}{166}$D.$\frac{27}{166}$

查看答案和解析>>

同步練習(xí)冊答案