分析 (1)由平面ABEF⊥平面ABCD可知AF⊥平面ABCD,從而AF⊥CD,結合AC⊥CD可得CD⊥平面AFC,故而CD⊥AN,又AN⊥CF,可證AN⊥平面CDF;
(2)由平面ABEF⊥平面ABCD可知AC⊥平面ABEF,即AC為棱錐C-BEF的高,由勾股定理求出AC,代入體積計算即可.
解答 證明:(1)∵四邊形ABEF為正方形,∴AB⊥AF,
∵四邊形ABCD為平行四邊形,∴AB∥CD,∴CD⊥AF,
∵∠ACD=90°,∴CD⊥AC,
又∵AF?平面AFC,AC?平面AFC,AF∩AC=A,
∴CD⊥平面AFC,∵AN?平面AFC,
∴CD⊥AN,又∵AN⊥CF,CF?平面CDF,CD?平面CDF,CF∩CD=C,
∴AN⊥平面CDF.
(2)∵AB∥CD,AC⊥CD,∴AC⊥AB,
又∵平面ABEF⊥平面ABCD,平面ABEF∩平面ABCD=AB,AC?平面ABCD,
∴AC⊥平面ABEF,
∵CD=AB=2,AD=4,∠ACD=90°,∴AC=$\sqrt{A{D}^{2}-C{D}^{2}}$=2$\sqrt{3}$.
∴三棱錐B-CEF的體積V=$\frac{1}{3}$S△BEF•AC=$\frac{1}{3}×\frac{1}{2}×{2}^{2}$×2$\sqrt{3}$=$\frac{4\sqrt{3}}{3}$.
點評 本題考查了線面垂直的判定與性質,棱錐的體積計算,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{4}{3}π$ | B. | $\frac{8}{3}π$ | C. | $\frac{16}{3}π$ | D. | $\frac{32}{3}π$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 19π | B. | 38π | C. | 48π | D. | $\frac{{19\sqrt{38}}}{3}π$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com