17.若tanα=$\frac{1}{2}$,tanβ=$\frac{1}{3}$,則tan(α-β)=$\frac{1}{7}$.

分析 根據(jù)題意,由正切的差角公式tan(α-β)=$\frac{tanα-tanβ}{1+tanαtanβ}$,將tanα與tanβ的值代入計算可得答案.

解答 解:根據(jù)題意,tanα=$\frac{1}{2}$,tanβ=$\frac{1}{3}$,
則tan(α-β)=$\frac{tanα-tanβ}{1+tanαtanβ}$=$\frac{\frac{1}{2}-\frac{1}{3}}{1+\frac{1}{2}×\frac{1}{3}}$=$\frac{1}{7}$;
故答案為:$\frac{1}{7}$.

點評 本題考查正切的差角公式,解題的關(guān)鍵是熟悉并靈活運用正切的差角公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知i為虛數(shù)單位,若(1+i) z=2i,則復(fù)數(shù)z=( 。
A.1-iB.1+iC.2-2iD.2+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p:?x∈R,sinx≥-1,則¬p( 。
A.?x0∈R,sinx0≤-1B.?x0∈R,sinx0<-1C.?x∈R,sinx≤-1D.?x∈R,sinx<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.己知向量$\overrightarrow{s}$=($\sqrt{3}$sin2x-1,cosx),$\overrightarrow{t}$=($\frac{1}{2}$,cosx),設(shè)f(x)=$\overrightarrow{s}$$•\overrightarrow{t}$+1.
(1)求函數(shù)f(x)的最小正周期及在區(qū)間[0,$\frac{π}{2}$]上的最大值;
(2)已知在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,其中A,B為銳角,f(A+$\frac{π}{6}$)=$\frac{8}{5}$,f($\frac{B}{2}$$-\frac{π}{12}$)-1=$\frac{\sqrt{10}}{10}$,又a+b=$\sqrt{2}$+1,求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的質(zhì)量指標值,由測量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標值落在區(qū)間[55,65),[65,75),[75,85]內(nèi)的頻率之比為4:2:1.
(I)求這些產(chǎn)品質(zhì)量指標值落在區(qū)間[75,85]內(nèi)的頻率;
(Ⅱ)若將頻率視為概率,從該企業(yè)生產(chǎn)的這種產(chǎn)品中隨機抽取3件,記這3件產(chǎn)品中質(zhì)量指標值位于區(qū)間[45,75)內(nèi)的產(chǎn)品件數(shù)為X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.證明.對于任意兩個向量$\overrightarrow{a}$,$\overrightarrow$都有||$\overrightarrow{a}$|-|$\overrightarrow$||≤|$\overrightarrow{a}$-$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知O為坐標原點,B、D分別是單位圓與x軸正半軸、y正半軸的交點,點P為單位圓劣弧$\widehat{BD}$上一點,若$\overrightarrow{OB}$+$\overrightarrow{OD}$=x$\overrightarrow{DB}$+y$\overrightarrow{OP}$,∠BOP=$\frac{π}{3}$,則x+y=(  )
A.1B.$\sqrt{3}$C.2D.4-3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若函數(shù)y=Asin(ωx+φ)的圖象如圖所示,求它的解析式、頻率和振幅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.直角坐標系xOy中,以原點為極點,x軸的正半軸為極軸建立極坐標系,設(shè)點A,B分別在曲線C1:$\left\{\begin{array}{l}x=3+2cosθ\\ y=4+2sinθ\end{array}\right.$(θ為參數(shù))和曲線C2:ρ=2上,則|AB|的最小值為1.

查看答案和解析>>

同步練習(xí)冊答案