8.在△ABC中,若tanA=2,tanB=3,且AB=$\sqrt{2}$,則AC=$\frac{3\sqrt{10}}{5}$.

分析 利用三角形的內(nèi)角和以及兩角和的正切函數(shù),求解角C的正切值,然后求解角的大小,利用同角三角函數(shù)基本關(guān)系式,求出B的正弦函數(shù)值,然后利用正弦定理通過(guò)AB=$\sqrt{2}$,即可求AC.

解答 解:(1)∵A+B+C=π,
∴tanC=-tan(A+B)
∵tanA=2,tanB=3,
tan(A+B)=$\frac{tanA+tanB}{1-tanAtanB}$=$\frac{2+3}{1-6}$=-1,
∴tanC=1,
∵C是三角形的內(nèi)角.
∴C=$\frac{π}{4}$,
∵tanB=3,可得:sinB=3cosB,
而sin2B+cos2B=1,且B為銳角,可求得sinB=$\frac{3\sqrt{10}}{10}$.
所以在△ABC中,由正弦定理得,AC=$\frac{AB}{sinC}$×sinB=$\frac{3\sqrt{10}}{5}$.
故答案為:$\frac{3\sqrt{10}}{5}$.

點(diǎn)評(píng) 本小題主要考查兩角和的正切公式,以及同角三角函數(shù)的應(yīng)用,并借助正弦定理考查邊角關(guān)系的運(yùn)算,對(duì)考生的化歸與轉(zhuǎn)化能力有較高要求,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y均有f(xy)=f(x)f(y),且f(-1)=1,當(dāng)0≤x<1時(shí),f(x)∈[0,1).
(1)判斷f(x)的奇偶性;
(2)判斷f(x)在[0,+∞)上的單調(diào)性,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.拋物線x2=2y的焦點(diǎn)坐標(biāo)為( 。
A.$(0,\frac{1}{2})$B.$(\frac{1}{2},0)$C.(0,1)D.(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某城市在進(jìn)行規(guī)劃時(shí),準(zhǔn)備設(shè)計(jì)一個(gè)圓形的開放式公園,為達(dá)到社會(huì)和經(jīng)濟(jì)效益雙豐收,園林公司進(jìn)行如下設(shè)計(jì),安排圓內(nèi)接四邊形ABCD作為綠化區(qū)域,其余作為市民活動(dòng)區(qū)域,其中△ABD區(qū)域種植花木后出售,△BCD區(qū)域種植草皮后出售,已知草皮每平方米售價(jià)為a元,花木每平方米的售價(jià)是草皮每平方米售價(jià)的三倍,若BC=6km,AD=CD=4km.
(1)若BD=2$\sqrt{7}$km,求綠化區(qū)域的面積;
(2)設(shè)∠BCD=θ,當(dāng)θ取何值時(shí),園林公司的總銷售金額最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若tanα=2,α是第三象限角,則sin(π+α)=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,拋物線y=ax2+2x-6與X軸交于點(diǎn)A(-6,0),B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線BD與拋物線交于點(diǎn)D,點(diǎn)D與點(diǎn)C關(guān)于該拋物線的對(duì)稱軸對(duì)稱.
(1)連接CD,求拋物線的解析式和線段CD的長(zhǎng)度;
(2)在線段BD下方的拋物線上有一點(diǎn)P,過(guò)點(diǎn)P作PM∥x軸,PN∥y軸,分別交BD于點(diǎn)M,N,當(dāng)△MPN的面積最大時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在三棱錐P-ABC中,側(cè)面PAC⊥底面ABC,△PAC為正三角形,∠ACB=90°,AC=6,BC=4,則此三棱錐外接球的表面積是64π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知tan(α+β)=5,tan(α-β)=3,求tan2α,tan2β,tan(2α+$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.(1)設(shè)f(x)的定義域?yàn)镽的函數(shù),求證:F(x)=$\frac{1}{2}$[f(x)+f(-x)]是偶函數(shù);G(x)=$\frac{1}{2}$[f(x)-f(-x)]是奇函數(shù).
(2)利用上述結(jié)論,你能把函數(shù)f(x)=3x3+2x2-x+3表示成一個(gè)偶函數(shù)與一個(gè)奇函數(shù)之和的形式.

查看答案和解析>>

同步練習(xí)冊(cè)答案