15.如果命題P(n)對n=k成立,則它對n=k+1也成立,現(xiàn)已知P(n)對n=4不成立,則下列結論正確的是( 。
A.P(n)對n∈N*成立B.P(n)對n>4且n∈N*成立
C.P(n)對n=5成立D.P(n)對n=3不成立

分析 根據(jù)歸納推理的關系進行判斷即可.

解答 解:∵P(n)對n=4不成立,∴A錯誤,無法判斷當n>4時,P(n)是否成立,
假設P(n)對n=3成立,則根據(jù)推理關系,得P(n)對n=4成立,與條件P(n)對n=4不成立矛盾,
∴假設不成立,
故選:D

點評 本題主要考查推理和證明的應用,利用反證法是解決本題的關鍵.比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.設各項均為正數(shù)的無窮數(shù)列{an},{bn}滿足:對任意n∈N*都有2bn=an+an+1且an+12=bn•bn+1,
(1)求證:數(shù)列{$\sqrt{_{n}}$}是等差數(shù)列;
(2)設a1=1,a2=2,求{an}和{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,正四棱柱ABCD-A1B1C1D1中,設AD=1,D1D=λ(λ>0),若棱C1C上存在唯一的一點P滿足A1P⊥PB,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知△ABC為銳角三角形,命題p:不等式logcosC$\frac{cosA}{sinB}$>0恒成立,命題q:不等式logcosC$\frac{cosA}{cosB}$>0恒成立,則復合命題p∨q、p∧q、¬p中,真命題的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知拋物線Г:y2=2px(p>0)的焦點為F,O為坐標原點,準線為x=-1,傾斜角為銳角的直線l過點F且交拋物線于A(x,1,y1),B(x2,y2)兩點(其中y1<0,y2>0),與y軸交于C點.
(Ⅰ)M是拋物線Г在第一象限上的動點,則當$\frac{|MO|}{|MF|}$取得最大值時,試確定點M的坐標;
(Ⅱ)證明:點($\frac{|CA|}{|AF|}$,$\frac{|CB|}{|BF|}$)在直線x-y+1=0上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知$\overrightarrow{OP}$=(2,1),$\overrightarrow{OA}$=(1,7),$\overrightarrow{OB}$=(5,1).設M是直線OP上的一點(其中O為坐標原點),當$\overrightarrow{MA}$•$\overrightarrow{MB}$取最小值時:
(1)求$\overrightarrow{OM}$;      
(2)設∠AMB=θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.求函數(shù)y=$\frac{1}{3}$x與y=x-x2圍成封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若函數(shù)f(x)=1+$\frac{1}{x}$(x>0)的反函數(shù)為f-1(x),則不等式f-1(x)>2的解集為$(1,\frac{3}{2})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知點P是圓x2+y2=4上的動點,點A,B,C是以坐標原點為圓心的單位圓上的動點,且$\overrightarrow{AB}•\overrightarrow{BC}$=0,則|$\overrightarrow{PA}$$+\overrightarrow{PB}$$+\overrightarrow{PC}$|的最小值為( 。
A.4B.5C.6D.7

查看答案和解析>>

同步練習冊答案