【題目】如圖,在多面體中,四邊形為正方形,,.

(1)證明:平面平面.

(2)若平面,二面角,三棱錐的外接球的球心為,求二面角的余弦值.

【答案】(1)詳見解析;(2).

【解析】

證明平面即可證明平面平面(2)由題確定二面角的平面角為,進而推出為線段的中點,以為坐標原點建立空間直角坐標系由空間向量的線面角公式求解即可

(1)證明:因為四邊形為正方形,

所以

,,

所以平面.

因為平面,所以平面平面.

(2)解:由(1)知平面,又,則平面,從而,

,所以二面角的平面角為.

為坐標原點建立空間直角坐標系,如圖所示,

,.

因為三棱錐的外接球的球心為,所以為線段的中點,

的坐標為,.

設平面的法向量為,則,

,得.

易知平面的一個法向量為,

.

由圖可知,二面角為銳角,

故二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,,的中點.將沿折起,使折起后平面平面,則異面直線所成角的余弦值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底而為正方形,底面,,點為棱的中點,點,分別為棱,上的動點(,與所在棱的端點不重合),且滿足.

(1)證明:平面平面;

(2)當三棱錐的體積最大時,求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)的圖像關于直線對稱.

1)求的值;

2)判斷并證明函數(shù)在區(qū)間上的單調(diào)性;

3)若直線的圖像無公共點,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設某校新、老校區(qū)之間開車單程所需時間為只與道路暢通狀況有關,對其容量為的樣本進行統(tǒng)計,結果如圖:

(分鐘)

25

30

35

40

頻數(shù)(次)

20

30

40

10

1)求的分布列與數(shù)學期望;

2)劉教授駕車從老校區(qū)出發(fā),前往新校區(qū)做一個50分鐘的講座,結束后立即返回老校區(qū),求劉教授從離開老校區(qū)到返回老校區(qū)共用時間不超過120分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學高等數(shù)學這學期分別用兩種不同的數(shù)學方式試驗甲、乙兩個大一新班(人數(shù)均為人,入學數(shù)學平均分和優(yōu)秀率都相同;勤奮程度和自覺性都一樣).現(xiàn)隨機抽取甲、乙兩班各名的高等數(shù)學期末考試成績,得到莖葉圖:

(1)學校規(guī)定:成績不得低于85分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷“能否在犯錯誤率的概率不超過0.025的前提下認為成績優(yōu)異與教學方式有關?”

下面臨界值表僅供參考:

(參考方式:,其中

(2)現(xiàn)從甲班高等數(shù)學成績不得低于80分的同學中隨機抽取兩名同學,求成績?yōu)?6分的同學至少有一個被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的普通方程為,曲線參數(shù)方程為為參數(shù));以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的極坐標方程為,.

(1)求的參數(shù)方程和的直角坐標方程;

(2)已知上參數(shù)對應的點,上的點,求中點到直線的距離取得最小值時,點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題錯誤的是( )

A. 命題“若,則”的逆否命題為“若 ,則

B. 為假命題,則均為假命題

C. 對于命題,使得,則,均有

D. ”是“”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)過多年的努力,炎陵黃桃在國內(nèi)乃至國際上逐漸打開了銷路,成為炎陵部分農(nóng)民脫貧致富的好產(chǎn)品.為了更好地銷售,現(xiàn)從某村的黃桃樹上隨機摘下了100個黃桃進行測重,其質(zhì)量分布在區(qū)間內(nèi)(單位:克),統(tǒng)計質(zhì)量的數(shù)據(jù)作出其頻率分布直方圖如圖所示:

(1)按分層抽樣的方法從質(zhì)量落在,的黃桃中隨機抽取5個,再從這5個黃桃中隨機抽2個,求這2個黃桃質(zhì)量至少有一個不小于400克的概率;

(2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該村的黃桃樹上大約還有100000個黃桃待出售,某電商提出兩種收購方案:

A.所有黃桃均以20/千克收購;

B.低于350克的黃桃以5/個收購,高于或等于350克的以9/個收購.

請你通過計算為該村選擇收益最好的方案.

參考數(shù)據(jù):

查看答案和解析>>

同步練習冊答案