11.已知命題“若p,則q”為假命題,則下列命題中一定為假命題的是(  )
A.若q,則pB.若¬p,則¬qC.若¬q,則¬pD.若¬p,則q

分析 求出命題“若p,則q”的逆否命題,判斷即可.

解答 解:命題“若p,則q”為假命題,
則其逆否命題也是假命題,
即若¬q,則¬p是假命題,
故選:C.

點(diǎn)評(píng) 本題考察了四種命題之間的關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.定義在區(qū)間[x1,x2]長(zhǎng)度為x2-x1(x2>x1),已知函數(shù)f(x)=$\frac{({a}^{2}+a)x-2}{{a}^{2}x}$(a∈R,a≠0)的定義域與值域都是[m,n],則區(qū)間[m,n]取最長(zhǎng)長(zhǎng)度時(shí)a的值是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知m,n為兩條不同直線,α,β為兩個(gè)不同平面,給出下列命題:
①$\left\{\begin{array}{l}m⊥α\\ m⊥n\end{array}\right.⇒n∥α$②$\left\{\begin{array}{l}m⊥β\\ n⊥β\end{array}\right.⇒n∥m$③$\left\{\begin{array}{l}m⊥α\\ m⊥β\end{array}\right.⇒β∥α$④$\left\{\begin{array}{l}m?α\\ n?β\\ α∥β\end{array}\right.⇒m∥n$,
其中正確的序號(hào)是②③.(填上你認(rèn)為正確的所有序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知某種商品每日的銷售量y(單位:噸)與銷售價(jià)格x(單位:萬(wàn)元/噸,1<x≤5)滿足:當(dāng)1<x≤3時(shí),y=a(x-4)2+$\frac{6}{x-1}$(a為常數(shù));當(dāng)3<x≤5時(shí),y=kx+7,已知當(dāng)銷售價(jià)格為3萬(wàn)元/噸時(shí),每日可售出商品該4噸,當(dāng)銷售價(jià)格為5萬(wàn)元/噸時(shí),每日可售出商品該2噸.
(1)求a,k的值,并確定y關(guān)于x的函數(shù)解析式;
(2)若該商品的銷售成本為1萬(wàn)元/噸,試確定銷售價(jià)格x的值,使得每日銷售該商品所獲利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-3,x≤1}\\{xlnx-kx+2k,x>1}\end{array}\right.$在R上為增函數(shù),則實(shí)數(shù)k的取值范圍為[-2,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在空間四邊形ABCD中,E,F(xiàn),G分別是AB,BC,CD的中點(diǎn),
(Ⅰ)求證:BD∥平面EFG;
(Ⅱ)若AD=CD,AB=CB,求證:AC⊥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知直線l:x-y+a=0(a<0)和圓C:(x-3)2+( y-2)2=19相交于兩點(diǎn)A、B,且|AB|=2$\sqrt{17}$.
(1)求實(shí)數(shù)a的值;
(2)設(shè)O為坐標(biāo)原點(diǎn),求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知f(x)=-cos2x+sinx+a,對(duì)任意x∈R都有f(x)≥1恒成立,則實(shí)數(shù)a的取值范圍是[$\frac{9}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)函數(shù)f(x)=lnx-x2+ax(a∈R).
(Ⅰ) 求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 設(shè)g(x)=xe1-x,若對(duì)于任意給定的x0∈(0,e],方程f(x)+1=g(x0)在(0,e]內(nèi)有兩個(gè)不同的實(shí)數(shù)根,求a的取值范圍.(其中e是自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案