13.球的半徑擴(kuò)大到原來(lái)的n倍,其表面積和體積分別擴(kuò)大到原來(lái)的( 。┍叮
A.n和n2B.n和n3C.n2和n3D.以上都不對(duì)

分析 利用球的表面積公式和體積公式求解.

解答 解:球的半徑擴(kuò)大到原來(lái)的n倍,
∵${S}_{球}=4π{r}^{2}$,${V}_{球}=\frac{4}{3}π{r}^{3}$,
∴其表面積和體積分別擴(kuò)大到原來(lái)的n2和n3倍.
故選:C.

點(diǎn)評(píng) 本題考查球的表面積和體積擴(kuò)大到原來(lái)的多少倍的求法,是基礎(chǔ)題,解題時(shí)要注意球的表面積公式和體積公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的兩焦點(diǎn)為F1、F2,P為橢圓上的動(dòng)點(diǎn),若△PF1F2最大面積為$\frac{a^2}{2}$,則其離心率為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{3}$D.$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)F1,F(xiàn)2是橢圓$C:\frac{x^2}{5}+{y^2}=1$的兩焦點(diǎn),點(diǎn)P(異于點(diǎn)F1,F(xiàn)2)關(guān)于點(diǎn)F1,F(xiàn)2的對(duì)稱點(diǎn)分別為點(diǎn)P1,P2,線段PQ的中點(diǎn)在橢圓C上,則|P1Q|+|P2Q|=4$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)$f(x)=\frac{1}{{{x^2}-1}}$.
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)判斷并證明函數(shù)f(x)在(1,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)雙曲線C經(jīng)過(guò)點(diǎn)(1,3),且與$\frac{{y}^{2}}{3}$-x2=1具有相同漸近線,則C的方程為$\frac{y^2}{6}-\frac{x^2}{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.對(duì)于任意實(shí)數(shù)k,直線y=k(x-1)與圓x2+y2-2x-2y-2=0的交點(diǎn)的個(gè)數(shù)是2個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若a=3,b=4,∠C=60?,則邊c的值等于$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)f(x)為偶函數(shù)且在(-∞,0)內(nèi)是增函數(shù),f(-2)=0,則xf(x)>0的解集為(  )
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)全集U=R,集合A={x|(1-2x)(x+3)>0},B={x|$\frac{1}{x}$>1},則圖中陰影部分所表示的集合是[$\frac{1}{2}$,1).(用區(qū)間表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案