19.以坐標(biāo)原點(diǎn)為對(duì)稱中心,兩坐標(biāo)軸為對(duì)稱軸的雙曲線C的漸近線方程為$y=±\frac{{\sqrt{7}}}{3}x$,則雙曲線C的離心率為(  )
A.$\frac{5}{3}或\frac{4}{3}$B.$\frac{{4\sqrt{7}}}{7}或\frac{4}{3}$C.$\frac{{4\sqrt{7}}}{7}$D.$\frac{4}{3}$

分析 由條件根據(jù)漸近線方程,分類討論,求得雙曲線C的離心率的值.

解答 解:當(dāng)焦點(diǎn)在x軸上時(shí),由題意可得$\frac{a}$=$\frac{\sqrt{7}}{3}$,設(shè)a=3k,b=$\sqrt{7}$k,∴c=$\sqrt{{a}^{2}{+b}^{2}}$=4k,
∴$\frac{c}{a}$=$\frac{4}{3}$.
當(dāng)焦點(diǎn)在y軸上時(shí),由題意可得$\frac{a}$=$\frac{\sqrt{7}}{3}$,設(shè)b=3k,a=$\sqrt{7}$k,∴c=$\sqrt{{a}^{2}{+b}^{2}}$=4k,
∴$\frac{c}{a}$=$\frac{4}{\sqrt{7}}$=$\frac{4\sqrt{7}}{7}$.
綜上可得,雙曲線C的離心率為$\frac{4}{3}$或$\frac{4\sqrt{7}}{7}$,
故選:B.

點(diǎn)評(píng) 本題主要考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,已知線段AB長(zhǎng)度為a(a為定值),在其上任意選取一點(diǎn)M,在AB的同一側(cè)分別以AM、MB為底作正方形AMCD、MBEF,⊙P和⊙Q是這兩個(gè)正方形的外接圓,它們交于點(diǎn)M、N.試以A為坐標(biāo)原點(diǎn),建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系.
(1)證明:不論點(diǎn)M如何選取,直線MN都通過(guò)一定點(diǎn)S;
(2)當(dāng)$|AM|=\frac{1}{3}|AB|$時(shí),過(guò)A作⊙Q的割線,交⊙Q于G、H兩點(diǎn),在線段GH上取一點(diǎn)K,使$\frac{1}{|AG|}+\frac{1}{|AH|}$=$\frac{2}{|AK|}$求點(diǎn)K的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.寫(xiě)出(x${\;}^{6}+\frac{1}{x\sqrt{x}}$)5的展開(kāi)式中常數(shù)項(xiàng):5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某廠每月生產(chǎn)一種投影儀的固定成本為0.5萬(wàn)元,但每生產(chǎn)100臺(tái),需要加可變成本(即另增加投入)0.25萬(wàn)元,市場(chǎng)對(duì)此產(chǎn)品的年需求量為500臺(tái),銷售的收入函數(shù)為R(x)=5x-$\frac{x^2}{2}$(萬(wàn)元)(0≤x≤5),其中x是產(chǎn)品售出的數(shù)量(單位:百臺(tái)).
(1)求月銷售利潤(rùn)y(萬(wàn)元)關(guān)于月產(chǎn)量x(百臺(tái))的函數(shù)解析式;
(2)當(dāng)月產(chǎn)量為多少時(shí),銷售利潤(rùn)可達(dá)到最大?最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知等差數(shù)列{an}的前n項(xiàng)和為${S_n}=2{n^2}-4n+c$,則首項(xiàng)a1=-2;該數(shù)列的首項(xiàng)a1與公差d滿足的${({a_1})^d}$=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)g(x)=2cos(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍(縱坐標(biāo)不變)后得到h(x)的圖象,設(shè)f(x)=$\frac{1}{4}$x2+h(x),則f′(x)的圖象大致為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.拋物線${x^2}=-\frac{1}{4}y$的焦點(diǎn)坐標(biāo)是( 。
A.(-1,0)B.(-2,0)C.$(0,-\frac{1}{8})$D.$(0,-\frac{1}{16})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,內(nèi)角A,B,C的對(duì)應(yīng)邊分別為a,b,c,已知b=asinC+ccosA
(1)求A+B的值;
(2)若c=$\sqrt{2}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)函數(shù)f′(x)的導(dǎo)數(shù),定義:若f(x)=ax3+bx2+cx+d(a≠0),且方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的對(duì)稱中心.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有對(duì)稱中心”,請(qǐng)你運(yùn)用這一發(fā)現(xiàn)處理下列問(wèn)題:
設(shè)$g(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x+\frac{1}{12}$,則$g(\frac{1}{2016})+g(\frac{2}{2016})+g(\frac{3}{2016})+…+g(\frac{2015}{2016})$=2015.

查看答案和解析>>

同步練習(xí)冊(cè)答案