2.已知f(x)=x3+3ax2+bx+a2(a>1)在x=-1時(shí)有極值0.
(1)求常數(shù)a,b的值; 
(2)求f(x)的單調(diào)區(qū)間.  
(3)求f(x)的極值.

分析 (1)已知函數(shù)f(x)=x3+3ax2+bx+a2在x=1處有極值0,即f(-1)=0,f′(-1)=0,通過(guò)求導(dǎo)函數(shù),再代入列方程組,即可解得a、b的值;
(2)分別解不等式f′(x)>0和f′(x)<0,即可得函數(shù)f(x)的單調(diào)增區(qū)間與單調(diào)遞減區(qū)間.
(3)利用(1)(2)的結(jié)果直接求解函數(shù)的極值即可.

解答 解:(1)∵f′(x)=3x2+6ax+b,(a>1)函數(shù)f(x)=x3+3ax2+bx+a2在x=-1處有極值0,
∴f(-1)=0,f′(-1)=0
∴-1+3a-b+a2=0,3-6a+b=0.
解得a=2,b=9.
(2)f(x)=x3+6x2+9x+4,
∴f′(x)=3x2+12x+9
∴由f′(x)=3x2+12x+9>0得x∈(-∞,-3)或(-1,+∞)
由f′(x)=3x2+12x+9<0得x∈(-3,-1)
∴函數(shù)f(x)的單調(diào)增區(qū)間為:(-∞,-3),(-1,+∞),減區(qū)間為:(-3,-1).
(3)由(2)可知f(x)的極小值:f(-1)=0,
極大值為:f(-3)=-27+54-27+4=4.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)在求函數(shù)極值中的應(yīng)用,利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在正方體ABCD-A1B1C1D1中,E、F分別為A1B1C1D1,CDD1C1的中心,試用向量$\overrightarrow{{B}_{1}B}$,$\overrightarrow{{B}_{1}{C}_{1}}$,$\overrightarrow{{B}_{1}{A}_{1}}$表示向量:
(1)$\overrightarrow{{B}_{1}C}$;
(2)$\overrightarrow{{B}_{1}D}$;
(3)$\overrightarrow{AE}$;
(4)$\overrightarrow{AF}$;
(5)$\overrightarrow{EF}$;
(6)判斷向量$\overrightarrow{EF}$與$\overrightarrow{{B}_{1}C}$是否為共線向量?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$(a>b>0),直線y=x+$\sqrt{6}$與以原點(diǎn)為圓心,以橢圓C的短半軸為半徑的圓相切,F(xiàn)1,F(xiàn)2為其左右焦點(diǎn),P為橢圓C上的任意一點(diǎn),△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2,則橢圓C的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知軸截面是等腰直角三角形的圓錐,若其母線長(zhǎng)為2,則此圓錐側(cè)面積為2$\sqrt{2}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在△ABC中,AB=2$\sqrt{3}$,BC=3,∠ABC=30°,則AC=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{21-6\sqrt{3}}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖,已知B、C是二面角α-l-β棱上兩點(diǎn)AB?α,AB⊥l,CD?β,CD⊥l,AB=BC=1,CD=$\sqrt{3}$,AD=2$\sqrt{2}$,則二面角α-l-β的大小是150°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.“tana=2”是“tan2a=-$\frac{4}{3}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.計(jì)算:
(1)($\frac{25}{9}$)${\;}^{\frac{1}{2}}$+30-($\frac{3}{4}$)-1
(2)lg$\sqrt{25}$+lg2-lg10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知$\vec a=(sinπx,1),\vec b=(\sqrt{3},cosπx)$,$f(x)=\vec a•\vec b$
(I)若x∈[0,2],求$f(x)=\vec a•\vec b$的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)y=f(x)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)的坐標(biāo)為P,第一個(gè)最低點(diǎn)的坐標(biāo)為Q,坐標(biāo)原點(diǎn)為O,求∠POQ的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案