12.已知直線y=m(0<m<2)與函數(shù)y=sinωx+$\sqrt{3}$cosωx(ω>0)的圖象依次交于A(1,m),B(5,m),C(7,m)三點,則ω=( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{π}{6}$

分析 y=sinωx+$\sqrt{3}$cosωx=2sin(ωx+$\frac{π}{3}$),作出函數(shù)草圖可知函數(shù)周期為6.

解答 解:$y=sinωx+\sqrt{3}cosωx=2(cos\frac{π}{3}sinωx+sin\frac{π}{3}cosωx)=2sin(ωx+\frac{π}{3})$,
∵直線y=m與函數(shù)y=sinωx+$\sqrt{3}$cosωx(ω>0)的圖象依次交于A(1,m),B(5,m),C(7,m)三點,
∴$T=7-1=6,\frac{2π}{ω}=6,ω=\frac{π}{3}$.
故選A.

點評 本題考查了三角函數(shù)的恒等變換及性質,發(fā)現(xiàn)函數(shù)周期是解題關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知θ∈R,向量$\overrightarrow{a}$=(sinθ,cosθ),$\overrightarrow$=(2,1),若$\overrightarrow{a}$∥$\overrightarrow$,則sin2θ( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{2}{5}$D.-$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知向量$\overrightarrow{a}$=($\sqrt{3}$,-1),$\overrightarrow$=( $\sqrt{3}$,1),則<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知cos(α-$\frac{π}{6}$)=$\frac{15}{17}$,且α為大于$\frac{π}{6}$的銳角,求cosα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=cosωx($\sqrt{3}$sinωx-cosωx)+m(ω>0)的兩條對稱軸之間的最小距離為$\frac{π}{2}$
(I)求ω的值及y=f(x)的單調遞增區(qū)間;
(II)若y=f(x)在[-$\frac{π}{3}$,$\frac{π}{6}}$]上的最大值與最小值之和為$\frac{5}{2}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知△ABC內有2005個點,其中任意三點不共線,把這2005個點加上△ABC的三個點共2008個點作為頂點,組成互不相疊的小三角形,則一共可組成小三角形的個數(shù)為( 。
A.2004B.2009C.4011D.4013

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知四棱錐P-ABCD中,四邊形ABCD是邊長為2的菱形,AC交BD于F,E為PA的中點,PC=3,且PC⊥平面ABCD.
(1)求證:平面EBD⊥平面ABCD;
(2)若三棱錐P-BCF的體積為2$\sqrt{3}$,求點E到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若a>0,$x=\frac{{\sqrt{{{(sin1)}^a}}+\sqrt{{{(cos1)}^a}}}}{{\sqrt{{{(sin1)}^a}+{{(cos1)}^a}}}}$,$y=\sqrt{{{(sin1)}^a}+{{(cos1)}^a}}$,$z=\frac{{2{{(sin1)}^a}•{{(cos1)}^a}}}{{{{(sin1)}^a}+{{(cos1)}^a}}}$,則x,y,z的大小順序為( 。
A.x>z>yB.x>y>zC.z>x>yD.z>y>x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知數(shù)列{an}滿足a1=1,an+1=2an(n∈N*),則an=2n-1

查看答案和解析>>

同步練習冊答案