分析 (1)由題意知,AC=BC=$\sqrt{2}$,由勾股定理可得AC⊥BC,取AC中點O,連接DO,由面面垂直的性質(zhì)得OD⊥平面ABC,再由線面垂直的判斷得答案;
(2)(1)知,BC為三棱錐B-ACD的高,求出三棱錐B-ACD的體積,由等積法可得D-ABC的體積;
(3)取G為線段BD的中點,連接EF、EG、FG,由三角形的中位線定理結(jié)合面面平行的判定得答案.
解答 (1)證明:在圖1中,由題意知,AC=BC=$\sqrt{2}$,∴AC2+BC2=AB2,∴AC⊥BC,
取AC中點O,連接DO,則DO⊥AC,又平面ADC⊥平面ABC,
且平面ADC∩平面ABC=AC,DO?平面ACD,從而OD⊥平面ABC,
∴OD⊥BC,
又AC⊥BC,AC∩OD=O,
∴BC⊥平面ACD;
(2)解:由(Ⅰ)知,BC為三棱錐B-ACD的高,且BC=$\sqrt{2}$,S△ACD=$\frac{1}{2}$×1×1=$\frac{1}{2}$,
∴三棱錐B-ACD的體積為:VB-ACD=$\frac{1}{3}$Sh=$\frac{1}{3}$×$\frac{1}{2}×\sqrt{2}$=$\frac{\sqrt{2}}{6}$,
由等積性知幾何體D-ABC的體積為:$\frac{\sqrt{2}}{6}$;
(3)解:若G為線段BD的中點,則平面GEF∥平面ACD.
證明:取G為線段BD的中點,連接EF、EG、FG,
∵點E、F、G分別為AB、BC、BD的中點,∴EF∥AC,EG∥AD,
AC?面ACD,AD?面ACD,EF?面ACD,EG?面ACD,
∴EF∥面ACD,EG∥面ACD,又EF∩EG=E,
∴平面GEF∥平面ACD.
點評 本小題主要考查空間線面關(guān)系、幾何體的體積等知識,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運算求解能力,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若α⊥β,m∥α,則m⊥β | B. | 若m∥α,n∥m,則n∥α | ||
C. | 若m∥α,n∥β,且m∥n,則α∥β | D. | 若m⊥β,m∥α,則α⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{1}{2}$,$\frac{\sqrt{3}}{3}$] | B. | (0,$\frac{\sqrt{2}}{2}$] | C. | [$\frac{\sqrt{3}}{3}$,1) | D. | [$\frac{\sqrt{2}}{3}$,$\frac{\sqrt{3}}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com