20.已知等差數(shù)列{an}滿足a2=2,a6+a8=14.
(I)求數(shù)列{an}的通項公式;
(II)記bn=$\frac{{a}_{n}}{{2}^{n}}$,求數(shù)列{bn}的前n項和Sn

分析 (I)設等差數(shù)列{an}的公差為d,由a2=2,a6+a8=14.可得:a1+d=2,2a1+12d=14,聯(lián)立解出即可得出.
(II)記bn=$\frac{{a}_{n}}{{2}^{n}}$=$\frac{n}{{2}^{n}}$,利用錯位相減法即可得出.

解答 解:(I)設等差數(shù)列{an}的公差為d,∵a2=2,a6+a8=14.
∴a1+d=2,2a1+12d=14,
解得a1=d=1,
∴an=1+(n-1)=n.
(II)記bn=$\frac{{a}_{n}}{{2}^{n}}$=$\frac{n}{{2}^{n}}$,
數(shù)列{bn}的前n項和Sn=$\frac{1}{2}+\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,
∴$\frac{1}{2}$Sn=$\frac{1}{{2}^{2}}$+$\frac{2}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n}}$+$\frac{n}{{2}^{n+1}}$,
∴$\frac{1}{2}$Sn=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=$\frac{\frac{1}{2}[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$,
化為:Sn=2-$\frac{2+n}{{2}^{n}}$.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式、錯位相減法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.在${(\frac{x}{2}-\frac{1}{{\root{3}{x}}})^n}$的二項展開式中,只有第5項的二項式系數(shù)最大,則此展開式中各項系數(shù)絕對值之和為( 。
A.${(\frac{1}{2})^9}$B.${(\frac{3}{2})^9}$C.${(\frac{1}{2})^8}$D.${(\frac{3}{2})^8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.$\frac{\overline{z}}{1+i}$=2+i,則z=( 。
A.1-3iB.1+3iC.-1-3iD.-1+3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知實數(shù)x,y滿足x2+y2+xy-4=0,則x3-y3的取值范圍為[-16,16].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.將一張畫有平面直角坐標系的圖紙折疊一次,使得點A(0,2)與點B(1,1)重合,若此時點C(7,3)與點D(m,n)重合,則m的值為( 。
A.$\frac{5}{2}$B.2C.4D.$\frac{17}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.給出下列命題:
①存在實數(shù)x,使sinx+cosx=$\frac{3}{2}$;      
②函數(shù)y=sin($\frac{2}{3}$x+$\frac{π}{2}$)是偶函數(shù);
③若α,β是第一象限角,且α>β,則cosα<cosβ;
④函數(shù)y=sin2x的圖象向左平移$\frac{π}{4}$個單位,得到函數(shù)y=sin(2x+$\frac{π}{4}$)的圖象.
其中結論正確的序號是②.(把正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設x、y滿足約束條件$\left\{{\begin{array}{l}{2x+3y-3≥0}\\{x-y+1≥0}\\{x-1≤0}\end{array}}\right.$,則z=x+2y的最大值為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知f(x)=(log2x)2-2alog2x-3(a∈R).
(1)當a=-1時,解不等式f(x)<0;
(2)若x∈[2,8],求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知數(shù)列{an}的前n項和Sn=3n2-n,則其通項公式為an=6n-4.

查看答案和解析>>

同步練習冊答案