分析 (I)設等差數(shù)列{an}的公差為d,由a2=2,a6+a8=14.可得:a1+d=2,2a1+12d=14,聯(lián)立解出即可得出.
(II)記bn=$\frac{{a}_{n}}{{2}^{n}}$=$\frac{n}{{2}^{n}}$,利用錯位相減法即可得出.
解答 解:(I)設等差數(shù)列{an}的公差為d,∵a2=2,a6+a8=14.
∴a1+d=2,2a1+12d=14,
解得a1=d=1,
∴an=1+(n-1)=n.
(II)記bn=$\frac{{a}_{n}}{{2}^{n}}$=$\frac{n}{{2}^{n}}$,
數(shù)列{bn}的前n項和Sn=$\frac{1}{2}+\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,
∴$\frac{1}{2}$Sn=$\frac{1}{{2}^{2}}$+$\frac{2}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n}}$+$\frac{n}{{2}^{n+1}}$,
∴$\frac{1}{2}$Sn=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=$\frac{\frac{1}{2}[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$,
化為:Sn=2-$\frac{2+n}{{2}^{n}}$.
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式、錯位相減法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ${(\frac{1}{2})^9}$ | B. | ${(\frac{3}{2})^9}$ | C. | ${(\frac{1}{2})^8}$ | D. | ${(\frac{3}{2})^8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1-3i | B. | 1+3i | C. | -1-3i | D. | -1+3i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | 2 | C. | 4 | D. | $\frac{17}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com