分析 利用復數代數形式的乘除運算分別化簡括號內部的代數式,然后利用復數代數形式的乘除運算化簡求得答案.
解答 解:∵$\frac{2+2i}{\sqrt{3}-i}=\frac{(2+2i)(\sqrt{3}+i)}{(\sqrt{3}-i)(\sqrt{3}+i)}=\frac{2\sqrt{3}-2+(2\sqrt{3}+2)i}{4}$=$\frac{\sqrt{3}-1}{2}+\frac{\sqrt{3}+1}{2}i$=$\frac{1}{2}(1+i)(\sqrt{3}+i)$,
$\frac{2-2i}{1+\sqrt{3}i}=\frac{(2-2i)(1-\sqrt{3}i)}{(1+\sqrt{3}i)(1-\sqrt{3}i)}=\frac{2-2\sqrt{3}-(2\sqrt{3}+2)i}{4}$=$\frac{1-\sqrt{3}}{2}-\frac{\sqrt{3}+1}{2}i$=$-\frac{1}{2}(1+i)(\sqrt{3}+i)$,
∴($\frac{2+2i}{\sqrt{3}-i}$)7-($\frac{2-2i}{1+\sqrt{3}i}$)7=$\frac{1}{{2}^{6}}(1+i)^{7}(\sqrt{3}+i)^{7}$.
∵(1+i)2=2i,∴(1+i)7=(2i)3(1+i)=8-8i,
∵$(\sqrt{3}+i)^{2}=2+2\sqrt{3}i$,∴$(\sqrt{3}+i)^{7}=-64\sqrt{3}-64i$,
∴原式=$\frac{1}{64}(8-8i)(-64\sqrt{3}-64i)=(-8\sqrt{3}-8)+(8\sqrt{3}-8)i$.
故答案為:$(-8\sqrt{3}-8)+(8\sqrt{3}-8)i$.
點評 本題考查了復數代數形式的混合運算,考查了學生靈活的計算能力,是中檔題.
科目:高中數學 來源: 題型:選擇題
A. | CC1與B1E是異面直線 | B. | A1C1⊥平面ABB1A1 | ||
C. | AE,B1C1為異面直線,且AE⊥B1C1 | D. | A1C1∥平面A1EB |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (1,0) | B. | ($\frac{4}{3}$,0) | C. | ($\frac{5}{3}$,0) | D. | (2,0) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com