15.已知三棱柱ABC-A′B′C′的側(cè)面均是矩形,求證:它的任意兩個側(cè)面的面積和大于第三個側(cè)面的面積.

分析 利用三角形中任意兩邊之和大于第三邊來進行證明.

解答 證明:∵三棱柱ABC-A′B′C′的側(cè)面均是矩形,
∴三個側(cè)面的面積分別為AB•AA1,AC•AA1,BC•AA1,
∵AB+AC>BC,AB+BC>AC,AC+BC>AB,
∴它的任意兩個側(cè)面的面積和大于第三個側(cè)面的面積.

點評 本題考查側(cè)面均為矩形的三棱柱的任意兩個側(cè)面的面積和大于第三個側(cè)面的面積的證明,是基礎題,解題時要注意三角形中任意兩邊之和大于第三邊這一性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.在棱長為1的正方體ABCD-A1B1C1D1中,M和N分別為A1B1和BB1的中點,那么與直線AM垂直的向量有(  )
A.$\overrightarrow{CN}$B.$\overrightarrow{BC}$C.$\overrightarrow{C{C}_{1}}$D.$\overrightarrow{{B}{C}_{1}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如圖所示的水平放置的三角形的直觀圖中,D′是△A′B′C′中B′C′邊的中點,那么A′B′,A′D′,A′C′三條線段對應原圖形中線段AB,AD,AC中(  )
A.最長的是AB,最短的是ACB.最長的是AC,最短的是AB
C.最長的是AB,最短的是ADD.最長的是AD,最短的是AC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.(1)已知不等式|2x+t|-t≤8的解集是{x|-5≤x≤4},求實數(shù)t;
(2)已知實數(shù)x,y,z滿足x2+$\frac{1}{4}$y2+$\frac{1}{9}$z2=2,求x+y+z的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|且|$\overrightarrow{a}$+2$\overrightarrow$|>|m$\overrightarrow$|恒成立,則實數(shù)m的取值范圍是(  )
A.[-2,2]B.[-$\frac{5}{2}$,$\frac{5}{2}$]C.(-2,2)D.(-$\frac{5}{2}$,$\frac{5}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=sin2x+$\sqrt{2}$cos(x-$\frac{π}{4}$),則f(x)的值域是[-$\frac{5}{4}$,1+$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在數(shù)列{an}中,對任意n∈N*,若存在常數(shù)λ1,λ2,…,λk,使得an+k1an+k-12an+k-2+…+λkan(λi≠0,i=1,2,…,k)恒成立,則稱數(shù)列{an}為k階數(shù)列.
①若an=2n,則數(shù)列{an}為1階數(shù)列;
②若an=2n+1,則數(shù)列{an}為2階數(shù)列;
③若an=n2,則數(shù)列{an}為3階數(shù)列;
以上結(jié)論正確的序號是( 。
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.非零向量 $\overrightarrow{a}$,$\overrightarrow$夾角為120°,且|$\overrightarrow{a}$-$\overrightarrow$|=2,則|$\overrightarrow{a}$+$\overrightarrow$|的取值范圍為( 。
A.[1,$\sqrt{3}$]B.[2,$\frac{4\sqrt{3}}{3}$]C.[$\frac{2\sqrt{3}}{3}$,4)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知m,n∈R,函數(shù)f(x)=ln(x+m)的圖象與函數(shù)g(x)=ex-1+n的圖象在x=1處有公共的切線.
(1)求m,n的值;
(2)設b>a>0,求證:$\sqrt{ab}<\frac{b-a}{f(b)-f(a)}<\frac{a+b}{2}$.

查看答案和解析>>

同步練習冊答案