20.函數(shù)$f(x)=\frac{1}{2}{x^2}-alnx$,已知函數(shù)y=f(x)的圖象在點P(2,f(2))處的切線方程為l:y=x+b.
(1)求出函數(shù)y=f(x)的表達(dá)式和切線l方程;
(2)當(dāng)$x∈[\frac{1}{e},e]$時(其中e=2.71828…),不等式f(x)<k恒成立,求實數(shù)k的取值范圍.

分析 (1)求出f(x)的導(dǎo)數(shù),可得切線的斜率,由已知切線方程,可得a=2,求出切點,可得b=2,進(jìn)而得到切線方程;
(2)求出f(x)的導(dǎo)數(shù),可得極值點和單調(diào)區(qū)間、極值和最值,由題意可得k>f(x)的最大值.

解答 解:(1)函數(shù)$f(x)=\frac{1}{2}{x^2}-alnx$,導(dǎo)數(shù)f′(x)=x-$\frac{a}{x}$,f′(2)=2-$\frac{a}{2}$=1,解得a=2,
即f(x)=$\frac{1}{2}$x2-2lnx,f(2)=2-2ln2,
由于點P(2,f(2))在y=x+b上,
可得b=2,直線l:y=x-2ln2;
(2)由(1)知f(x)=$\frac{1}{2}$x2-2lnx,
f′(x)=x-$\frac{2}{x}$=$\frac{(x-\sqrt{2})(x+\sqrt{2})}{x}$,
當(dāng)f′(x)=0時,x=$\sqrt{2}$,則隨x的變化,f(x),f′(x)的變化如下:

 x    $\frac{1}{e}$  ($\frac{1}{e}$,$\sqrt{2}$)  $\sqrt{2}$ ($\sqrt{2}$,e)   e
 f′(x)    -  0+ 
 f(x) 2+$\frac{1}{2{e}^{2}}$  遞減  1-ln2 遞增 $\frac{{e}^{2}}{2}$-2
由表可以知道當(dāng)x∈[$\frac{1}{e}$,e]時,函數(shù)的最大值為2+$\frac{1}{2{e}^{2}}$,
則k>2+$\frac{1}{2{e}^{2}}$.

點評 本題考查導(dǎo)數(shù)的運用:求切線方程和單調(diào)區(qū)間、極值和最值,考查不等式恒成立問題的解法,注意運用轉(zhuǎn)化思想,考查化簡整理的運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,矩形ABCD中,點A在x軸上,點B的坐標(biāo)為(1,0).且點C與點D在函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≥0}\\{-\frac{1}{2}x+1,x<0}\end{array}\right.$的圖象上.若在矩形ABCD內(nèi)隨機(jī)取一點,則該點取自空白部分的概率等于( 。
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.執(zhí)行如圖的程序框圖,輸出的S為( 。
A.25B.30C.55D.91

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.$cos(-\frac{11π}{6})+sin\frac{11π}{3}$的值等于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知A={x|0<x<2},B={x|y=ln(1-x)},則A∪B等于( 。
A.(-∞,1)B.(-∞,2)C.(0,2)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)的定義域為R,f(-1)=2,對任意x∈R,f′(x)>3,則f(x)<3x+5的解集為( 。
A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某實驗室至少需要某種化學(xué)藥品10kg,現(xiàn)在市場上出售的該藥品有兩種包裝,一種是每袋3kg,價格為12元;另一種是每袋2kg,價格為10元.但由于保質(zhì)期的限制,每一種包裝購買的數(shù)量都不能超過5袋,則在滿足需要的條件下,花費最少(  )
A.56B.42C.44D.54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知P($\sqrt{2}$,$\sqrt{3}$)在雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1,其左、右焦點分別為F1、F2,△PF1F2的內(nèi)切圓與x軸相切于點M,則$\overrightarrow{MP}$•$\overrightarrow{M{F}_{2}}$的值為( 。
A.$\sqrt{3}$+1B.$\sqrt{2}$-1C.$\sqrt{2}$+1D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知不等式|2x-t|-1<0的解集為(0,1),則t的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

同步練習(xí)冊答案