A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
分析 由題意設(shè)底面正△ABC的邊長為a,過P作PO⊥平面ABC,垂足為O,則點O為底面△ABC的中心,故∠PAO即為PA與平面ABC所成角,由此能求出PA與平面ABC所成的角.
解答 解:由題意設(shè)底面正△ABC的邊長為a,過P作PO⊥平面ABC,垂足為O,
則點O為底面△ABC的中心,故∠PAO即為PA與平面ABC所成角,
∵|OA|=$\frac{2}{3}×\frac{\sqrt{3}}{2}a$=$\frac{\sqrt{3}}{3}a$,|OP|=$\sqrt{3}$,
又∵直三棱柱ABC-A1B1C1中體積為$\frac{9}{4}$,
∴由直棱柱體積公式得V=$\frac{\sqrt{3}}{4}{×a}^{2}×\sqrt{3}$=$\frac{9}{4}$,解得a=$\sqrt{3}$,
∴tan∠PAO=$\frac{\sqrt{3}}{\frac{\sqrt{3}}{3}a}$=$\sqrt{3}$,
∴$∠PAO=\frac{π}{3}$,
∴PA與平面ABC所成的角為$\frac{π}{3}$.
故選:C.
點評 本題考是線面角的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 8 | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com