已知等差數(shù)列{an}的前三項依次為a-1,
17
2
-a,3,則該數(shù)列中第一次出現(xiàn)負(fù)值的項為( 。
A、第9項B、第10項
C、第11項D、第12項
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:求出數(shù)列{an}的通項公式,再解不等式an<0得出結(jié)果.
解答: 解:∵a-1,
17
2
-a,3是等差數(shù)列{an}的前三項,
∴(a-1)+3=2(
17
2
-a),
∴a=5,a1=4,a2=
7
2

∴d=-
1
2
,
∴an=-
1
2
n+
9
2

令an<0,則-
1
2
n+
9
2
<0,
∴n>9,
故選:B.
點評:本題考查等差數(shù)列的通項與性質(zhì),確定數(shù)列{an}的通項公式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

運行如圖所示程序框圖,輸出的結(jié)果是( 。
A、15B、16C、31D、63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax,x≥2
(3-a)x+2,x<2
,滿足對任意x1≠x2,都有
f(x1)-f(x2)
x1-x2
<0,則實數(shù)a取值的范圍是( 。
A、1<a<3
B、2≤a<3
C、1<a≤2
D、2<a<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空中有一氣球,在它的正西方A點測得它的仰角為45°,同時在它南偏東60°的B點,測得它的仰角為30°,若A、B兩點間的距離為266米,這兩個觀測點均離地1米,那么測量時氣球到地面的距離是( 。
A、
266
7
7
B、(
266
7
7
+1)米
C、266米
D、266
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的程序框圖中,若輸出S=
4
9
,則判斷框內(nèi)實數(shù)p的取值范圍是( 。
A、(17,18]
B、(17,18)
C、(16,17]
D、(16,17)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在集合{1,2,3,4,5,6}中任取一個偶數(shù)a和一個奇數(shù)b構(gòu)成以原點為起點的向量
a
=(a,b),從所有得到的以原點為起點的向量中任取兩個向量為鄰邊作平行四邊形,記所有作成的平行四邊形的個數(shù)為t,在區(qū)間[1,
t
5
]和[2,4]分別各取一個數(shù),記為m和n,則方程
x 2
m 2
+
y 2
n 2
=1表示焦點在x軸上的橢圓的概率是( 。
A、
1
3
B、
1
2
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題:
①命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”;
②“x>2”是“x2-3x+2>0”的充分不必要條件;
③若p∧q為假命題,則p,q均為假命題;
④對于命題p:?x∈R,使得x2+x+1<0,則?p為:?x∈R,均有x2+x+1≥0.
其中,錯誤的命題的個數(shù)是(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

適合log5xlogx7=log57的x的集合是( 。
A、{5,7}
B、{0,1以外的實數(shù)}
C、{不為1的正數(shù)}
D、R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)f(x)=lnx-
a
x
.若函數(shù)f(x)在[1,e]上的最小值為
3
2
,求實數(shù)a的值.
(2)求證:當(dāng)1<x<2時,不等式
1
lnx
-
1
x-1
1
2
恒成立.

查看答案和解析>>

同步練習(xí)冊答案