13.直線y=-a與y=tan2x的圖象的相鄰兩個交點的距離是(  )
A.$\frac{π}{2}$B.πC.D.與a的大小有關(guān)

分析 利用正切函數(shù)的圖象與正切函數(shù)的周期求解即可.

解答 解:直線y=-a與y=tan2x的圖象的相鄰兩個交點的距離是函數(shù)y=tan2x的周期,可得T=$\frac{π}{2}$.
故選:A.

點評 本題考查正切函數(shù)的周期的應(yīng)用,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知動點M到點F(1,0)的距離與M到定直線x+1=0的距離相等,動點M的軌跡為C,過點F且傾斜角等于45°的直線與軌跡C交于A、B兩點,O是坐標原點,則△OAB的面積等于(  )
A.3$\sqrt{2}$B.3$\sqrt{3}$C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若f(x)=$\left\{\begin{array}{l}{a\sqrt{x},x≥0}\\{x+a-1,x<0}\end{array}\right.$在R上是增函數(shù),則a的取值范圍是0<a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.作出函數(shù)f(x)=|x-3|+$\sqrt{{x}^{2}+6x+9}$的圖象,并指出其單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在數(shù)列{an}中,a1=1,等差數(shù)列{$\sqrt{{a}_{n}+1}$}的前10項和為55$\sqrt{2}$,則a11等于( 。
A.241B.243C.121D.123

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若an+1+(-1)nan=2n-1,則S40=820.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,已知a,b,c成等比數(shù)列,且cosB=$\frac{3}{4}$.
(1)求$\frac{c}{a}$的值;
(2)設(shè)$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{3}{2}$,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知B1,B2是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$短軸上的兩個端點,O為坐標原點,點A是橢圓長軸上的一個端點,點P是橢圓上異于B1,B2的任意一點,點Q與點P關(guān)于y軸對稱,給出以下命題,其中所有正確命題的序號是①④⑤
①當P點的坐標為$(-\frac{2a}{3},\frac{a}{3})$時,橢圓的離心率為$\frac{{2\sqrt{5}}}{5}$
②直線PB1,PB2的斜率之積為定值$-\frac{a^2}{b^2}$
③$\overrightarrow{P{B_1}}•\overrightarrow{P{B_2}}<0$
④$\frac{{P{B_2}}}{{sin∠P{B_1}{B_2}}}$的最大值為$\frac{{{a^2}+{b^2}}}{a}$
⑤直線PB1,QB2的交點M在雙曲線$\frac{y^2}{b^2}-\frac{x^2}{a^2}=1$上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某民營企業(yè)生產(chǎn)甲乙兩種產(chǎn)品.根據(jù)市場調(diào)查與預(yù)測,甲產(chǎn)品的利潤 P(x)與投資額x成正比,其關(guān)系如圖1;乙產(chǎn)品的利潤Q(x)與投資額x的算術(shù)平方根成正比,其關(guān)系如圖2(利潤與投資單位:萬元).
(1)試寫出利潤 P(x)和Q(x)的函數(shù)關(guān)系式;
(2)該企業(yè)已籌集到3萬元資金,并全部投入甲乙兩種產(chǎn)品的生產(chǎn).問怎樣分配這3萬元資金,才能使企業(yè)獲得最大利潤,其最大利潤是多少萬元?

查看答案和解析>>

同步練習冊答案