11.?dāng)?shù)列{an),a1=3,an+1=2an+2n(n≥1),求an

分析 an+1=2an+2n(n≥1),變形為$\frac{{a}_{n+1}}{{2}^{n+1}}$-$\frac{{a}_{n}}{{2}^{n}}$=$\frac{1}{2}$,利用等差數(shù)列的通項(xiàng)公式即可得出.

解答 解:an+1=2an+2n(n≥1),
∴$\frac{{a}_{n+1}}{{2}^{n+1}}$-$\frac{{a}_{n}}{{2}^{n}}$=$\frac{1}{2}$,
∴數(shù)列$\{\frac{{a}_{n}}{{2}^{n}}\}$是等差數(shù)列,首項(xiàng)為$\frac{3}{2}$,公差為$\frac{1}{2}$.
∴$\frac{{a}_{n}}{{2}^{n}}$=$\frac{3}{2}$+$\frac{1}{2}(n-1)$,
an=(n+2)•2n-1

點(diǎn)評 本題考查了遞推公式、等差數(shù)列的通項(xiàng)公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在四棱錐P-ABCD中,四條側(cè)棱長均為2,底面ABCD為正方形,E為PC的中點(diǎn),且∠BED=90°,若該四棱錐的所有頂點(diǎn)都在同一球面上,則該球的表面積是( 。
A.$\frac{16}{3}π$B.$\frac{16}{9}π$C.$\frac{4}{3}π$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=(1+ax2)ex(a≠0)在R上有極值點(diǎn),則實(shí)數(shù)a的取值范圍是(-∞,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知α-β=$\frac{π}{3}$,cosα+cosβ=$\frac{1}{5}$,則cos$\frac{α+β}{2}$=$\frac{\sqrt{3}}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足a1=1,$\frac{{a}_{n}}{{a}_{n+1}}$=$\frac{n}{n+1}$(n=1,2,3…).
(1)求a2,a3,a4,a5,并猜想通項(xiàng)公式an
(2)根據(jù)(1)中的猜想,有下面的數(shù)陣:
S1=a1
S2=a2+a3
S3=a4+a5+a6
S4=a7+a8+a9+a10
S5=a11+a12+a13+a14+a15
試求S1,S1+S3,S1+S3+S5,并猜想S1+S3+S5+…+S2n-1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)是定義在區(qū)間(-∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且滿足xf′(x)>-2f(x),則不等式$\frac{(x+2015)^{2}f(x+2015)}{16}$<f(-4)的解集為( 。
A.{x|-2019<x<0}B.{x|x<-2019}C.{x|-2019<x<-2015}D.{x|-2011<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,A,B,C的對邊分別為a,b,c,且b=2,2cos2$\frac{B}{2}$-sinB=1,若滿足條件的△ABC恰有兩個,則a的取值范圍是(2,2$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知長方體ABCD-A1B1C1D1的長、寬、高分別為a,b,c,點(diǎn)E,F(xiàn),G分別在線段BC1,A1D,A1B1上運(yùn)動(如圖甲).當(dāng)三棱錐G-AEF的俯視圖如圖乙所示時,三棱錐G-AEF的側(cè)視圖面積等于( 。
A.$\frac{1}{4}$abB.$\frac{1}{4}$bcC.$\frac{1}{2}$bcD.$\frac{1}{2}$ac

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}滿足an+1=3an+5×2n+4,a1=1,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊答案