14.已知等比數(shù)列{an}的公比為正數(shù),a2=1,${a_3}•{a_9}=2{a_5}^2$,則a1的值是$\frac{\sqrt{2}}{2}$.

分析 由已知數(shù)據(jù)可得首項和公比的方程組,解方程組可得.

解答 解:由題意設等比數(shù)列{an}的公比為q,則q>0,
∵a2=1,a3•a9=2a52,
∴a1q=1,a12•q10=2(a1q42,
兩式聯(lián)立解得a1=$\frac{\sqrt{2}}{2}$,q=$\sqrt{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.

點評 本題考查等比數(shù)列的通項公式,求出數(shù)列的首項和公比是解決問題的關(guān)鍵,屬基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知復數(shù)z滿足:(1+i)z=i(i為虛數(shù)單位),則|z|等于(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知中心在原點O的橢圓,右焦點為F(1,0),經(jīng)過F點且與x軸垂直的弦長為$\sqrt{2}$,過點F的直線l與橢圓交于A,B兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的范圍;
(Ⅲ)若直線AB的斜率為k,若向量$\overrightarrow{a}$=(-2$\sqrt{2}$,1)與$\overrightarrow{OA}$+$\overrightarrow{OB}$共線,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)和函數(shù)g(x)滿足f(x)=g(x)+m,(m∈R),其中g(shù)(x)=$\frac{2}{{4}^{x}-1}$;
(I)若函數(shù)f(x)是奇函數(shù),求常數(shù)m的值;
(II)求g(-2015)+g(-2014)+…+g(-2)+g(-1)+g(1)+g(2)+…+g(2014)+g(2015)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若先將函數(shù)$y=\sqrt{3}sin({x-\frac{π}{6}})+cos({x-\frac{π}{6}})$圖象上各點的縱坐標不變,橫坐標伸長到原來的2倍,再將所得圖象向左平移$\frac{π}{6}$個單位,所得函數(shù)圖象的一條對稱軸的方程是( 。
A.$x=\frac{π}{6}$B.$x=\frac{π}{3}$C.$x=\frac{π}{2}$D.$x=\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若函數(shù)$f(x)=\frac{1}{{\sqrt{a{x^2}-ax+1}}}$的定義域為R,則a的取值范圍是( 。
A.(-4,0]B.(-4,0)C.(0,4]D.[0,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列說法錯誤的是( 。
A.命題“若x2-4x+3=0,則x=3”的逆否命題是:“若x≠3,則x2-4x+3≠0”
B.“x>1”是“|x|>0”的充分不必要條件
C.若p且q為假命題,則p,q至少有一個假命題
D.命題p:“存在x∈R使得x2+x+1<0,”則¬p:“對于任意x∈R,均有x2+x+1>0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知直線3x+2y-3=0與6x+my+7=0互相平行,則它們之間的距離是(  )
A.4B.$\frac{{\sqrt{13}}}{2}$C.$\frac{{2\sqrt{13}}}{13}$D.$\frac{{7\sqrt{13}}}{26}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知橢圓C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1,圓G:(x-1)2+y2=1若P是橢圓上任意一點,過點P作圓G的切線,切點為Q,過點P作橢圓C右準線的垂線,垂足為H,則$\frac{PQ}{PH}$的取值范圍為$[\frac{\sqrt{3}}{6},\frac{\sqrt{15}}{12}]$.

查看答案和解析>>

同步練習冊答案