分析 (1)推導(dǎo)出PA⊥AB,AB⊥AD,從而AB⊥平面PAD,進(jìn)而AB⊥PD,再由AE⊥PD,能證明PD⊥平面ABE.
(II)四棱錐P-ABCD外接球球心是線段BD和線段PA的垂直平分線交點O,由此能求出四棱錐P-ABCD外接球的體積.
解答 證明:(1)∵PA⊥底面ABCD,AB?底面ABCD,
∴PA⊥AB,又∵底面ABCD為矩形,
∴AB⊥AD,PA∩AD,
又PA?平面PAD,AD?平面PAD,
∴AB⊥平面PAD,又PD?平面PAD,∴AB⊥PD,AD=AP,E為PD中點,
∴AE⊥PD,AE∩AB=A,AE?平面ABE,AB?平面ABE,
∴PD⊥平面ABE.
解:(II)四棱錐P-ABCD外接球球心是線段BD和線段PA的垂直平分線交點O,
由已知BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=$\sqrt{{2}^{2}+(2\sqrt{7})^{2}}$=4$\sqrt{2}$,
設(shè)C為BD中點,∴AM=2$\sqrt{2}$,OM=$\frac{1}{2}$AP=1,
∴OA=$\sqrt{A{M}^{2}+O{M}^{2}}$=$\sqrt{{1}^{2}+(2\sqrt{2})^{2}}$=3,
∴四棱錐P-ABCD外接球的體積是$\frac{4}{3}πA{M}^{3}$=36π.
點評 本題考查線面垂直的證明,考查四棱錐的體積的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 15 | C. | 18 | D. | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,4) | B. | (4,6] | C. | (-4,6) | D. | (-4,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com