7.已知函數(shù)f(x)=ax+1-1(a>0,且a≠1)的圖象恒過(guò)定點(diǎn)P,則點(diǎn)P的坐標(biāo)為(-1,0).

分析 令x+1=0,得x=-1,f(-1)=a0-1=0.于是f(x)恒過(guò)點(diǎn)(-1,0).

解答 解:令x+1=0,解得x=-1,f(-1)=a0-1=0.∴f(x)恒過(guò)點(diǎn)(-1,0).
故答案為(-1,0).

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)的性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{y+x≤1}\\{y-x≤2}\\{y≥0}\end{array}\right.$,則z=x-2y的最小值為( 。
A.-1B.-2C.-$\frac{5}{2}$D.-$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.計(jì)算:(log215-log25)(log32+log92)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.復(fù)數(shù)z=$\frac{a+3i}{1+2i}$的實(shí)部與虛部相等,則實(shí)數(shù)a=( 。
A.1B.2C.$\sqrt{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若直線ax+2y+6=0與直線x+(a-1)y+2=0垂直,則實(shí)數(shù)a的值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.對(duì)任意兩個(gè)非零的平面向量$\overrightarrow α$,$\overrightarrow β$,定義$\overrightarrow α$和$\overrightarrow β$之間的新運(yùn)算⊙:$\overrightarrow α⊙\overrightarrow β=\frac{\overrightarrow α•\overrightarrow β}{\overrightarrow β•\overrightarrow β}$.已知非零的平面向量$\overrightarrow a,\overrightarrow b$滿足:$\overrightarrow a⊙\overrightarrow b$和$\overrightarrow b⊙\overrightarrow a$都在集合$\{x|x=\frac{{\sqrt{3}k}}{3},k∈{Z}\}$中,且$|\overrightarrow a|≥|\overrightarrow b|$.設(shè)$\overrightarrow a$與$\overrightarrow b$的夾角$θ∈(\frac{π}{6},\frac{π}{4})$,則$(\overrightarrow a⊙\overrightarrow b)sinθ$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知復(fù)數(shù)z滿足(1+i)z=-1+5i(i為虛數(shù)單位),則|z|=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.復(fù)平面內(nèi),復(fù)數(shù)$\frac{1-i}{1+i}+{i^2}$虛部是(  )
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.一條線段的兩個(gè)端點(diǎn)的坐標(biāo)分別為(5,1)、(m,1),若這條線段被直線x-2y=0所平分,則m=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案