17.若實(shí)數(shù)x,y滿(mǎn)足條件$\left\{\begin{array}{l}{y+x≤1}\\{y-x≤2}\\{y≥0}\end{array}\right.$,則z=x-2y的最小值為(  )
A.-1B.-2C.-$\frac{5}{2}$D.-$\frac{7}{2}$

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線(xiàn)方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{y+x≤1}\\{y-x≤2}\\{y≥0}\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{y+x=1}\\{y-x=2}\end{array}\right.$,解得A($-\frac{1}{2}$,$\frac{3}{2}$),
化目標(biāo)函數(shù)z=x-2y為$y=\frac{x}{2}-\frac{z}{2}$,
由圖可知,當(dāng)直線(xiàn)$y=\frac{x}{2}-\frac{z}{2}$過(guò)A時(shí),最小在y軸上的截距最大,z有最小值為$-\frac{7}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線(xiàn)性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.集合M={x|lg(1-x)<0},集合N={x|x2≤1},則M∩N=(  )
A.(0,1)B.[0,1)C.[-1,1]D.[-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=2sin(2x+$\frac{π}{6}$),把函數(shù)f(x)的圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位,得到函數(shù)g(x)的圖象.關(guān)于函數(shù)g(x),下列說(shuō)法正確的是(  )
A.在[$\frac{π}{4}$,$\frac{π}{2}$]上是增函數(shù)B.其圖象關(guān)于直線(xiàn)x=-$\frac{π}{4}$對(duì)稱(chēng)
C.函數(shù)g(x)是奇函數(shù)D.當(dāng)x∈[0,$\frac{π}{3}$]時(shí),函數(shù)g(x)的值域是[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若α∈(-$\frac{π}{2}$,0),且2cos2α=sin($\frac{π}{4}-α$),則cos2α的值為$\frac{\sqrt{15}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知向量$\overrightarrow a$,$\overrightarrow b$滿(mǎn)足,$\overrightarrow{|a|}$=1,|${\overrightarrow b}$|=$\sqrt{2}$,|${\overrightarrow a-2\overrightarrow b}$|=$\sqrt{5}$,求|${\overrightarrow a+\overrightarrow b}$|=( 。
A.1B.$\sqrt{3}$C.$\sqrt{4}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí)  f(x)=2x-x2,則f(-1)=-1;若函數(shù)g(x)=f(x)+k-1有三個(gè)零點(diǎn),則k的取值范圍(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(1)θ是第三象限角,且${sin^4}θ+{cos^4}θ=\frac{5}{9}$,求sin2θ;
(2)化簡(jiǎn)$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{sin{{170}°}-\sqrt{1-{{sin}^2}{{170}°}}}}$
(3)已知$sinα+cosα=\frac{1}{5}(0<α<π)$,求$\frac{{sin(α-\frac{π}{4})}}{2sinαcosα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)f(x)=32x-a•3x+2,若x>0時(shí),f(x)>0恒成立,則實(shí)數(shù)a的取值范圍是$a<2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)f(x)=ax+1-1(a>0,且a≠1)的圖象恒過(guò)定點(diǎn)P,則點(diǎn)P的坐標(biāo)為(-1,0).

查看答案和解析>>

同步練習(xí)冊(cè)答案