7.已知函數(shù)f(x)=(x+1)2+aln(x+2)+b(a∈R,b∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)存在兩個極值點,且極小值恒小于零,求實數(shù)b的取值范圍.

分析 (1)求導(dǎo)數(shù),分類討論,利用導(dǎo)數(shù)的正負討論函數(shù)f(x)的單調(diào)性;
(2)由(1)可知a<$\frac{1}{2}$,f($\frac{-3+\sqrt{1-2a}}{2}$)<0恒成立,-b>($\frac{-3+\sqrt{1-2a}}{2}$+1)2+aln($\frac{-3+\sqrt{1-2a}}{2}$+2),求出右邊的最大值,即可求實數(shù)b的取值范圍.

解答 解:(1)∵f(x)=(x+1)2+aln(x+2)+b,
∴f′(x)=2(x+1)+$\frac{a}{x+2}$=$\frac{2{x}^{2}+6x+4+a}{x+2}$,
令y=2x2+6x+4+a,△=36-8(4+a)=4-8a≤0,即a≥$\frac{1}{2}$,f′(x)≤0,函數(shù)在(-2,+∞)上單調(diào)遞減;
a<$\frac{1}{2}$時,由y=0,可得x=$\frac{-3±\sqrt{1-2a}}{2}$,∴函數(shù)在(-2,$\frac{-3-\sqrt{1-2a}}{2}$),($\frac{-3+\sqrt{1-2a}}{2}$,+∞)上單調(diào)遞增;
在($\frac{-3-\sqrt{1-2a}}{2}$,$\frac{-3+\sqrt{1-2a}}{2}$)上單調(diào)遞減;
(2)由(1)可知a<$\frac{1}{2}$,f($\frac{-3+\sqrt{1-2a}}{2}$)<0恒成立,
∴-b>($\frac{-3+\sqrt{1-2a}}{2}$+1)2+aln($\frac{-3+\sqrt{1-2a}}{2}$+2),
令g(a)=($\frac{-3+\sqrt{1-2a}}{2}$+1)2+aln($\frac{-3+\sqrt{1-2a}}{2}$+2),t=$\frac{-3+\sqrt{1-2a}}{2}$(t>-$\frac{3}{2}$)
∴g(t)=(t+1)2+(-2t2-6t-4)ln(t+2),
∴g′(t)=(-4t-6)ln(t+2),
∵t>-$\frac{3}{2}$,∴g′(t)<0,函數(shù)g(t)在(-$\frac{3}{2}$,+∞)單調(diào)遞減,
∴g(t)≤g(-$\frac{3}{2}$)=$\frac{1}{4}$+$\frac{1}{2}$ln$\frac{1}{2}$,
∴-b>$\frac{1}{4}$+$\frac{1}{2}$ln$\frac{1}{2}$,
∴b<-$\frac{1}{4}$-$\frac{1}{2}$ln$\frac{1}{2}$.

點評 本題考查導(dǎo)數(shù)知識的綜合運用,考查函數(shù)的單調(diào)性,考查恒成立問題,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若f(x)=sinα-cosx,則f′(x)等于( 。
A.sinxB.cosxC.cosα+sinxD.2sinα+cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.n個連續(xù)自然數(shù)按規(guī)律排成如圖,則表中從2015到2017的箭頭方向依次為( 。
A.↓→B.→↑C.↑→D.→↓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某公司所生產(chǎn)的一款設(shè)備的維修費用y(單位:萬元)和使用年限x(單位:年)之間的關(guān)系如表所示,由資料可知y對x呈線性相關(guān)關(guān)系,
x23456
y2238556570
(Ⅰ)求線性回歸方程;
(Ⅱ)估計使用年限為10年時,維修費用是多少?
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某高中數(shù)學(xué)老師從一張測試卷的12道選擇題、4道填空題、6道解答題中任取3道題作分析,則在取到選擇題時解答題也取到的概率為( 。
A.$\frac{{C_{12}^1•C_6^1•C_{20}^1}}{{C_{22}^3-C_{10}^3}}$
B.$\frac{{C_{12}^1•C_6^1•C_4^1+C_{12}^1•C_6^2}}{{C_{22}^3-C_{10}^3}}$
C.$\frac{{C_{12}^1•(C_6^1•C_4^1+C_6^2)+C_{12}^2•C_6^1}}{{C_{22}^3-C_{10}^3}}$
D.$\frac{{C_{22}^3-C_{10}^3-C_{16}^3}}{{C_{22}^3-C_{10}^3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若f(x)=ax3+bx2+cx+d(a>0)為增函數(shù),則( 。
A.b2-4ac>0B.b>0,c>0C.b=0,c>0D.b2-3ac≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知二次函數(shù)f(x)=ax2+2x+c(x∈R)的值域為[0,+∞),則a+c的最小值是( 。
A.2B.4$\sqrt{2}$C.4D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,B=120°,AC=7,AB=5,則△ABC的面積為( 。
A.15$\sqrt{3}$B.3$\sqrt{3}$C.$\frac{{15\sqrt{3}}}{4}$D.$\frac{{15\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知△ABC的三條邊為a,b,c,滿足a+b≥2c,求證:c≤60°.

查看答案和解析>>

同步練習(xí)冊答案