【題目】已知頂點為原點的拋物線C的焦點與橢圓的上焦點重合,且過點.

1)求橢圓的標準方程;

(2)若拋物線上不同兩點A,B作拋物線的切線,兩切線的斜率,若記AB的中點的橫坐標為mAB的弦長,并求的取值范圍.

【答案】1;(2).

【解析】

1)由已知設拋物線方程為:,求出拋物線方程,從而可求出拋物線的焦點,進而求出橢圓的標準方程.

2)設,求出A,B兩點切線的斜率,根據(jù)可得

,由A,B兩點直線的斜率從而可求出,再由弦長公式即可求解.

1)由題意可知,設拋物線方程為:

在拋物線C上,

所以拋物線C的方程為,

所以橢圓的上焦點為

所以橢圓的標準方程為;

(2)設,

A點處的切線的斜率,

B點處的切線的斜率,

,所以

,

,

所以,

,所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某地擬建造一座體育館,其設計方案側面的外輪廓線如圖所示:曲線是以點為圓心的圓的一部分,其中是圓的切線,且,曲線是拋物線的一部分,,且恰好等于圓的半徑.

1)若米,米,求的值;

2)若體育館側面的最大寬度不超過75米,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】九章算術中對一些特殊的幾何體有特定的稱謂,例如:將底面為直角三角形的直三棱柱稱為塹堵,將一塹堵沿其一頂點與相對的棱刨開,得到一個陽馬底面是長方形,且有一條側棱與底面垂直的四棱錐和一個鱉臑四個面均為直角三角形的四面體在如圖所示的塹堵中,已知,若陽馬的外接球的表面積等于,則鱉臑的所有棱中,最長的棱的棱長為(

A.5B.C.D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修44:極坐標與參數(shù)方程

已知在平面直角坐標系xOy,O為坐標原點,曲線C (α為參數(shù)),在以平面直角坐標系的原點為極點x軸的正半軸為極軸,取相同單位長度的極坐標系,直線lρ.

()求曲線C的普通方程和直線l的直角坐標方程;

()曲線C上恰好存在三個不同的點到直線l的距離相等分別求出這三個點的極坐標

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“一帶一路”近年來成為了百姓耳熟能詳?shù)臒衢T詞匯,對于旅游業(yè)來說,“一帶一路”戰(zhàn)略的提出,讓“絲路之旅”超越了旅游產品、旅游線路的簡單范疇,賦予了旅游促進跨區(qū)域融合的新理念. 而其帶來的設施互通、經濟合作、人員往來、文化交融更是將為相關區(qū)域旅游發(fā)展帶來巨大的發(fā)展機遇.為此,旅游企業(yè)們積極拓展相關線路;各地旅游主管部門也在大力打造絲路特色旅游品牌和服務.某市旅游局為了解游客的情況,以便制定相應的策略. 在某月中隨機抽取甲、乙兩個景點10天的游客數(shù),統(tǒng)計得到莖葉圖如下:

(1)若將圖中景點甲中的數(shù)據(jù)作為該景點較長一段時期內的樣本數(shù)據(jù),以每天游客人數(shù)頻率作為概率.今從這段時期內任取4天,記其中游客數(shù)超過130人的天數(shù)為,求概率 ;

(2)現(xiàn)從上圖20天的數(shù)據(jù)中任取2天的數(shù)據(jù)(甲、乙兩景點中各取1天),記其中游客數(shù)不低于125且不高于135人的天數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,平面,,,分別是,的中點.

(1)求三棱錐的體積;

(2)若異面直線所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,,…,是由)個整數(shù),…,按任意次序排列而成的數(shù)列,數(shù)列滿足.

1)當時,寫出數(shù)列,使得.

2)證明:當為正偶數(shù)時,不存在滿足)的數(shù)列.

3)若,,…,,…,按從大到小的順序排列而成的數(shù)列,寫出),并用含的式子表示.

(參考:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知菱形中,相交于點,將沿折起,使頂點至點,在折起的過程中,下列結論正確的是( )

A.B.存在一個位置,使為等邊三角形

C.不可能垂直D.直線與平面所成的角的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩動圓),把它們的公共點的軌跡記為曲線,若曲線軸的正半軸的交點為,且曲線上的相異兩點滿足:.

1)求曲線的軌跡方程;

2)證明直線恒經過一定點,并求此定點的坐標;

3)求面積的最大值.

查看答案和解析>>

同步練習冊答案