1.已知函數(shù)f(x)=lg(2016+x),g(x)=lg(2016-x)
(1)判斷函數(shù)f(x)-g(x)的奇偶性,并予以證明.
(2)求使f(x)-g(x)<0成立x的集合.

分析 (1)可設(shè)h(x)=f(x)-g(x),可以求出h(x)的定義域?yàn)椋?2016,2016),并容易得到h(-x)=-h(x),這樣便得出f(x)-g(x)為奇函數(shù);
(2)根據(jù)對數(shù)函數(shù)的單調(diào)性和函數(shù)f(x)-g(x)的定義域便可由f(x)-g(x)<0得到$\left\{\begin{array}{l}{-2016<x<2016}\\{2016+x<2016-x}\end{array}\right.$,解該不等式組便可求出x的集合.

解答 解:(1)設(shè)h(x)=f(x)-g(x)=lg(2016+x)-lg(2016-x),h(x)的定義域?yàn)椋?2016,2016);
h(-x)=lg(2016-x)-lg(2016+x)=-h(x);
∴f(x)-g(x)為奇函數(shù);
(2)由f(x)-g(x)<0得,f(x)<g(x);
即lg(2016+x)<lg(2016-x);
∴$\left\{\begin{array}{l}{2016+x>0}\\{2016-x>0}\\{2016+x<2016-x}\end{array}\right.$;
解得-2016<x<0;
∴使f(x)-g(x)<0成立x的集合為(-2016,0).

點(diǎn)評 考查奇函數(shù)的定義及判斷方法和過程,對數(shù)的真數(shù)需大于0,以及對數(shù)函數(shù)的單調(diào)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在三角形ABC中,角A、B、C的對邊分別為a,b,c,且滿足$\frac{a}{6}$=$\frac{4}$=$\frac{c}{3}$,則$\frac{sin2A}{sinB+sinC}$=(  )
A.-$\frac{11}{14}$B.$\frac{12}{7}$C.-$\frac{11}{24}$D.-$\frac{7}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知l1:mx+y-2=0,l2:(m+1)x-2my+1=0,若l1⊥l2則m=( 。
A.m=0B.m=1C.m=0或m=1D.m=0或m=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1.若對任意m,n∈[-1,1],m+n≠0都有$\frac{f(m)+f(n)}{m+n}>0$.
(1)判斷函數(shù)f(x)的單調(diào)性,并簡要說明理由;
(2)若f(a+$\frac{1}{2}$)<f(3a),求實(shí)數(shù)a的取值范圍;
(3)若不等式f(x)≤(1-2a)t+2對所有x∈[-1,1]和a∈[-1,1]都恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知向量$\overrightarrow a=(cosx-sinx,2cosx)$,$\overrightarrow b=(cosx+sinx,sinx)(x∈R)$,則函數(shù)$f(x)={(\overrightarrow a•\overrightarrow b)^2}-1$是(  )
A.周期為π的偶函數(shù)B.周期為π的奇函數(shù)
C.周期為$\frac{π}{2}$的偶函數(shù)D.周期為$\frac{π}{2}$的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)p:關(guān)于x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0}; q:關(guān)于x的不等式ax2-x+a>0的解集為R.若p或q為真,“p且q”為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若實(shí)數(shù)a+b=2,a>0,b>0,則$\frac{1}{a}+\frac{a}$的最小值為$\frac{1}{2}+\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求滿足下列條件的直線方程:
 (1)求經(jīng)過直線l1:x+3y-3=0,l2:x-y+1=0的交點(diǎn),且平行于直線2x+y-3=0的直線l方程;
 (2)求在兩坐標(biāo)軸上截距相等,且與點(diǎn)A(3,1)的距離為$\sqrt{2}$的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.cos600°的值是( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案