18.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,acosC+$\sqrt{3}$asinC-b-c=0
(1)求A的大小      
(2)若a=2,b=$\sqrt{3}$,求△ABC的面積.

分析 (1)由正弦定理,三角函數(shù)恒等變換的應(yīng)用,三角形內(nèi)角和定理化簡(jiǎn)已知等式可得sin(A-30°)=$\frac{1}{2}$,結(jié)合A的范圍即可得解A的值.
(2)由余弦定理可解得c的值,利用三角形面積公式即可得解.

解答 (本題滿分為12分)
解:(1)由正弦定理得:acosC+$\sqrt{3}$asinC-b-c=0,
⇒sinAcosC-$\sqrt{3}$sinAsinC=sinB+sinC
⇒sinAcosC+$\sqrt{3}$sinAsinC=sin(A+C)+sinC
⇒$\sqrt{3}$sinA-cosA=1
⇒sin(A-30°)=$\frac{1}{2}$
⇒A-30°=30°
⇒A=60°,…(6分)
(2)由余弦定理可得:a2=b2+c2-2bccosA,
∴4=3+c2-2c$\sqrt{3}$×$\frac{1}{2}$,解得:c=$\frac{\sqrt{3}±\sqrt{7}}{2}$,
∵c>0,
∴c=$\frac{\sqrt{3}+\sqrt{7}}{2}$…(9分)
∴S△ABC=$\frac{1}{2}×\sqrt{3}×\frac{\sqrt{3}}{2}×$$\frac{\sqrt{3}+\sqrt{7}}{2}$=$\frac{3}{8}(\sqrt{3}+\sqrt{7})$…(12分)

點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,三角形面積公式,三角形內(nèi)角和定理,三角函數(shù)恒等變換的綜合應(yīng)用,熟練掌握靈活應(yīng)用相關(guān)公式及定理是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)$f(x)=\sqrt{(x+1)(x-2)}$的定義域集合是A,函數(shù)$g(x)=\frac{1}{{\sqrt{{x^2}-(2a+1)x+{a^2}+a}}}$的定義域集合是B.
(1)求集合A、B;
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某市“招手即!惫财嚨钠眱r(jià)按下列規(guī)則制定:
(1)5公里以內(nèi)(含5公里),票價(jià)2元;
(2)5公里以上,每增加5公里,票價(jià)增加1元(不足5公里的按5公里計(jì)算).如果某條線路的總里程為20公里,請(qǐng)根據(jù)題意,寫出票價(jià)與里程之間的函數(shù)解析式,并畫出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)a,b,c都是正數(shù),證明不等式$\frac{{a}^{2}}{b+c}$+$\frac{^{2}}{c+a}$+$\frac{{c}^{2}}{a+b}$$≥\frac{1}{2}$(a+b+c)當(dāng)且僅當(dāng)a=b=c時(shí)取等號(hào).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.用秦九韶算法求多項(xiàng)式f(x)=x6-5x5+6x4+x2+0.3x+2在x=-2時(shí)的值時(shí),v3的值為-40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.過(guò)雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{4}$=1上任意一點(diǎn)M作它的一條漸近線的垂線,垂足為N,O為原點(diǎn),則△MON的面積是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在公比為$\sqrt{2}$的等比數(shù)列{an}中,若sin(a2a3)=$\frac{3}{5}$,則cos(a1a6)的值是(  )
A.-$\frac{4}{5}$B.-$\frac{7}{25}$C.$\frac{4}{5}$D.$\frac{7}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知向量$\overrightarrow{a}$=(sinα,cosα-2sinα),$\overrightarrow$=(1,2),$\overrightarrow{a}$與$\overrightarrow$共線;
(1)求tanα的值;
(2)求$\frac{1+2sinαcosα}{sin^2α-cos^2α}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.平面內(nèi)四點(diǎn)A,B,C,P滿足|$\overrightarrow{AC}$+$\overrightarrow{BC}$|=|$\overrightarrow{AC}$-$\overrightarrow{BC}$|,AB=8,$\overrightarrow{CP}$=λ($\overrightarrow{CA}$+$\overrightarrow{CB}$),其中0≤λ≤$\frac{1}{2}$,則△ABC是直角三角形,$\overrightarrow{PC}$•($\overrightarrow{PA}$+$\overrightarrow{PB}$)的取值范圍是[-32,0].

查看答案和解析>>

同步練習(xí)冊(cè)答案