15.已知集合M={x|(x-a)(x2-ax+a-1)=0}中各元素之和為3,則實(shí)數(shù)a的值為2或$\frac{3}{2}$.

分析 先求出方程的解,x=a,a-1,或1.由于集合中的元素要滿足互異性,所以需討論方程解的情況,分成a=1,a-1=1,a≠1且a-1≠1三種情況進(jìn)行討論,根據(jù)元素之和為3便可求出a.

解答 解:x2-ax+a-1=[x-(a-1)](x-1)=0;
∴方程(x-a)(x2-ax+a-1)=0的解為:
x1=a,x2=a-1,x3=1;
若a=1,則A={1,0},不滿足A中元素之和為3;
若a-1=1,則A={2,1},元素和為3;
若a≠1,且a≠2,則A={a,a-1,1},∴a+a-1+1=3,解得a=$\frac{3}{2}$.
∴a=2或a=$\frac{3}{2}$.
故答案為:2或$\frac{3}{2}$.

點(diǎn)評(píng) 注意需對(duì)方程解中是否有相等的情況進(jìn)行討論,不能直接讓方程的解的和為3求a,并且討論時(shí)不要漏了可能的情況.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn)為F(2,0),且過點(diǎn)(0,$\sqrt{2}$).
(1)求此橢圓的方程;
(2)是否存在過點(diǎn)F且斜率為k的直線l與橢圓C交于A,B兩點(diǎn),使得∠AOB為銳角?若存在,求實(shí)數(shù)k的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若a,b為實(shí)數(shù),且(5a+6)2+(b-3)2=0,求$\frac{a}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在Rt△ABC中,∠CAB=90°,AB=2,AC=$\frac{\sqrt{2}}{2}$,曲線E過C點(diǎn),動(dòng)點(diǎn)P在E上運(yùn)動(dòng),且保持|PA|+|PB|的值不變,求曲線E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知2x=log23,則22x+1+2-2x=$\frac{13}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,直線y=x-2與圓x2+y2-4x+3=0及拋物線y2=8x依次交于A、B、C、D四點(diǎn),則|AB|+|CD|=(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=tan$\frac{πx}{4}$,x∈(2,6)的圖象與x軸交于A點(diǎn),過點(diǎn)A的直線l與函數(shù)的圖象交于B,C兩點(diǎn),則($\overrightarrow{OB}$+$\overrightarrow{OC}$)•$\overrightarrow{OA}$=( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.$\frac{{sin\frac{11π}{4}•cos(-\frac{2π}{3})}}{{tan(-\frac{23π}{3})}}+\frac{{sin(-\frac{21π}{4})}}{{cos(\frac{17π}{6})}}$化簡(jiǎn)的結(jié)果是( 。
A.$-\frac{{5\sqrt{6}}}{12}$B.$\frac{{\sqrt{6}}}{4}$C.$-\frac{{\sqrt{6}}}{4}$D.$\frac{{5\sqrt{6}}}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x),當(dāng)-2≤x≤-1時(shí),f(x)=-(x+1)2,當(dāng)-1<x<2時(shí),f(x)=x,則f(1)+f(2)+…+f(2015)=( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案