9.已知函數(shù)$f(x)=\left\{\begin{array}{l}x,|x|≤1\\ sin\frac{π}{2}x,|x|>1\end{array}\right.$則下列結(jié)論正確的是( 。
A.?x0∈R,f(-x0)≠-f(x0B.?x∈R,f(-x)≠f(x)
C.函數(shù)f(x)在$[-\frac{π}{2},\frac{π}{2}]$上單調(diào)遞增D.函數(shù)f(x)的值域是[-1,1]

分析 畫出函數(shù)的圖象,判斷選項即可.

解答 解:分段函數(shù)的圖象如圖:可知:A不正確;?x∈R,f(-x)≠f(x),B不正確;函數(shù)f(x)在$[-\frac{π}{2},\frac{π}{2}]$上單調(diào)遞增,所以C不正確;函數(shù)f(x)的值域是[-1,1],所以D正確.

不正確的選項為D.
故選:D.

點評 本題考查函數(shù)的圖象的應(yīng)用,函數(shù)的值域以及函數(shù)的對稱性的判斷,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|x-a|+2|x+b|(a>0,b>0)的最小值為1.
(1)求a+b的值;
(2)求$\frac{1}{a}$+$\frac{2}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}|{x+2}|,\;\;\;x≤0\\|{lo{g_2}x}|,\;\;x>0\end{array}\right.$若關(guān)于x的方程f(x)=a有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則x3(x1+x2)+$\frac{1}{{x}_{3}^{2}{x}_{4}}$的取值范圍是(  )
A.(-3,+∞)B.(-∞,3)C.[-3,3)D.(-3,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,$AC=1,BC=\sqrt{3}$,點M,N是線段AB上的動點,則$\overrightarrow{CM}•\overrightarrow{CN}$的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=x3+ax2+bx的圖象與直線y=-3x+8相切于點P(2,2).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)函數(shù)$g(x)=\frac{1}{3}{x^3}-\frac{m+1}{2}{x^2}+mx-\frac{1}{3}(m>1)$,對于?x1∈[0,4],?x2∈[0,4],使得f(x1)=g(x2),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=-2x2+mx-3為區(qū)間(-5,-3+n)內(nèi)的偶函數(shù).
(1)求實數(shù)m,n的值;
(2)求函數(shù)f(x)在區(qū)間[1,5]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè){an}是公差大于零的等差數(shù)列,已知a1=3,a3=a22-27.
(1)求{an}的通項公式;
(2)設(shè){bn}是以函數(shù)y=4sin2πx的最小正周期為首項,以2為公比的等比數(shù)列,求數(shù)列{an+bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow p=(2,-3)$,$\overrightarrow q=(x,6)$,且$\overrightarrow p$∥$\overrightarrow q$,則$|{\overrightarrow p+\overrightarrow q}|$的值為( 。
A.13B.14C.$\sqrt{13}$D.$\sqrt{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.執(zhí)行如圖所示的程序框圖,如果輸入a=2,b=2,那么輸出的a值為16.

查看答案和解析>>

同步練習(xí)冊答案