9.如圖,在邊長為1的正方形OABC中任取一點,則該點落在陰影部分中的概率為$\frac{1}{3}$.

分析 根據(jù)題意,易得正方形OABC的面積,觀察圖形,由定積分公式計算陰影部分的面積,進(jìn)而由幾何概型公式計算可得答案.

解答 解:根據(jù)題意,正方形OABC的面積為1×1=1,
由函數(shù)y=x與y=$\sqrt{x}$圍成陰影部分的面積為∫01($\sqrt{x}$-x)dx=($\frac{2}{3}{x}^{\frac{3}{2}}$-$\frac{{x}^{2}}{2}$)|01=$\frac{1}{6}$,
由于y=x2與y=$\sqrt{x}$互為反函數(shù),所以陰影部分的面積為$\frac{1}{3}$,
則正方形OABC中任取一點P,點P取自陰影部分的概率為$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點評 本題考查幾何概型的計算,涉及定積分在求面積中的應(yīng)用,關(guān)鍵是正確計算出陰影部分的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知同一平面內(nèi) 圓O1和圓 O2的半徑都等于1,圓心距離|O1O2|=4,P為動點,過點P分別作兩圓切線,M、N為切點,使得|PM|=$\sqrt{2}|{PN}$|,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)0<a<1,集合A={x∈R|x>0},B={x∈R|2x2-3(1+a)x+6a>0},D=A∩B,求集合D(用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx+$\frac{a}{x}$-1,a∈R.
(1)若函數(shù)f(x)的最小值為0,求a的值.
(2)證明:ex+(lnx-1)sinx>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)=$\frac{1}{2}$x2+$\frac{x}$+c(b,c為常數(shù))和g(x)=$\frac{1}{4}$x+$\frac{1}{x}$是定義在M={x|1≤x≤4}上的函數(shù),對任意的x∈M,存在x0∈M使得f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),則f(x)在集合M上的最大值為(  )
A.$\frac{7}{2}$B.5C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知復(fù)數(shù)z=(2m2-3m-2)+(m2-3m+2)i.
(Ⅰ)當(dāng)實數(shù)m取什么值時,復(fù)數(shù)z是純虛數(shù);
(Ⅱ)當(dāng)m=0時,化簡$\frac{{z}^{2}}{z+5+2i}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}+1}\\{-2x}\end{array}}\right.$$\begin{array}{l}(x≤0)\\(x>0)\end{array}$,若f(x)=5,則x的值是( 。
A.-2B.2或$-\frac{5}{2}$C.2或-2D.2或-2或$-\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)l,m是兩條不同的直線,α,β是兩個不重合的平面,給出下列四個命題:
①若α∥β,l⊥α,則l⊥β;
②若l∥m,l?α,m?β,則α∥β;
③若m⊥α,l⊥m,則l∥α;
④若l∥α,l⊥β,則α⊥β.
其中真命題的序號有①④.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{9}=1$的一條漸近線方程為3x-2y=0.F1、F2分別是雙曲線的左、右焦點,過點F2的直線與雙曲線右支交于A,B兩點.若|AB|=10,則△F1AB的周長為( 。
A.18B.26C.28D.36

查看答案和解析>>

同步練習(xí)冊答案