19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),它的一個(gè)焦點(diǎn)為F1(-1,0),且經(jīng)過點(diǎn)M(-1,$\frac{3}{2}$),則橢圓C的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

分析 由題意可知橢圓另一焦點(diǎn)的坐標(biāo),然后利用定義求出a,結(jié)合隱含條件求得b,則橢圓方程可求.

解答 解:∵橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn)為F1(-1,0),則其另一個(gè)焦點(diǎn)F2(1,0),
又橢圓經(jīng)過點(diǎn)M(-1,$\frac{3}{2}$),
∴$2a=\sqrt{(-1+1)^{2}+(\frac{3}{2}-0)^{2}}+\sqrt{(-1-1)^{2}+(\frac{3}{2}-0)^{2}}=4$,
∴a=2.
則b2=a2-c2=3,
∴橢圓方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
故答案為:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

點(diǎn)評(píng) 本題考查橢圓的簡單性質(zhì),考查了橢圓方程的求法,利用定義求解起到事半功倍的效果,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,一個(gè)小朋友按如圖所示的規(guī)則練習(xí)數(shù)數(shù),1大拇指,2食指,3中指,4無名指,5小指,6無名指,…,一直數(shù)到2015時(shí),對(duì)應(yīng)的指頭是中指(填指頭的名稱).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知數(shù)列{an}的通項(xiàng)公式為an=$\frac{n}{n+1}$,則數(shù)列{an}是(  )
A.遞減數(shù)列B.遞增數(shù)列C.常數(shù)列D.擺動(dòng)數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB=AD=4AP,∠BAD=∠PAD=60°,E,F(xiàn)分別是AP,AD的中點(diǎn).
(1)求證:平面BEF⊥平面PAD;
(2)求二面角P-BE-F的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某個(gè)幾何體的三視圖如圖所示,則該幾何體的體積是1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.若向量$\overrightarrow{a}$=(1,1),$\overrightarrow$=(2,5),$\overrightarrow{c}$=(3,x).
(1)若$\overrightarrow$∥$\overrightarrow{c}$,求x的值;
(2)若(8$\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{c}$=30,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.對(duì)于數(shù)25,規(guī)定第1次操作為23+53=133,第2次操作為13+33+33=55,如此反復(fù)操作,則第2016次操作后得到的數(shù)是(  )
A.25B.250C.55D.133

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知集合A={x|-5<x≤$\frac{3}{2}$},B={x|x<1或x>2},U=R.
(Ⅰ)求A∩B;
(Ⅱ)求A∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某市統(tǒng)計(jì)局就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖如圖所示.(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示[1000,1500).
(1)求居民收入在[2000,3000)的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10 000人中按分層抽樣方法抽出100人作進(jìn)一步分析,則月收入在[2000,3000)的這段應(yīng)抽取多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案