A. | 遞減數(shù)列 | B. | 遞增數(shù)列 | C. | 常數(shù)列 | D. | 擺動(dòng)數(shù)列 |
分析 an=$\frac{n}{n+1}$=1-$\frac{1}{n+1}$,判定an+1-an的符號(hào)即可得出.
解答 解:an=$\frac{n}{n+1}$=1-$\frac{1}{n+1}$,
∴an+1-an=$1-\frac{1}{n+2}$-$(1-\frac{1}{n+1})$=$\frac{1}{n+1}-\frac{1}{n+2}$>0,
∴an+1>an.
∴數(shù)列{an}是單調(diào)遞增數(shù)列.
故選:B.
點(diǎn)評(píng) 本題考查了數(shù)列的單調(diào)性、“作差法”,考查了變形能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π | B. | 4π | C. | 9π | D. | 16π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 已知x,y∈R,則$\left\{\begin{array}{l}{x>1}\\{y>2}\end{array}\right.$是$\left\{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}\right.$的充要條件 | |
B. | 對(duì)空間任意一點(diǎn)O與不共線的三點(diǎn)A,B,C,若$\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{Ob}+z\overrightarrow{OC}$(其中x,y,z∈R),則P,A,B,C四點(diǎn)共面 | |
C. | ?a,b∈R,$\frac{a+b}{2}≥\sqrt{ab}$ | |
D. | ?x∈R,sinx+cosx=$\frac{7}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | 4 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com