19.已知|$\overrightarrow{a}$|=6,|$\overrightarrow$|=4,$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{6}$,求
(1)$\overrightarrow{a}$•$\overrightarrow$;
(2)$\overrightarrow{a}$2;
(3)$\overrightarrow$2

分析 (1)根據(jù)向量的夾角公式計算即可;
(2)(3)根據(jù)向量的模即可求出答案.

解答 解:(1)∵|$\overrightarrow{a}$|=6,|$\overrightarrow$|=4,$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{6}$,
∴cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$,
∴$\overrightarrow{a}•\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|cosθ=4×6×cos$\frac{π}{6}$=12;
(2)$\overrightarrow{a}$2=|$\overrightarrow{a}$|2=36,
(3)$\overrightarrow$2=|$\overrightarrow$|2=16.

點評 本題考查了向量的夾角公式和向量的模的計算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若x,y∈R+且2x+y=1,則$\frac{1}{x}+\frac{1}{y}$的最小值( 。
A.$3+2\sqrt{2}$B.$3-2\sqrt{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,一輛汽車在一條水平的公路上向正西行駛,到A處時測得公路北側(cè)一山頂D在西偏北30°的方向上,行駛600m后到達(dá)B處,測得此山頂在西偏北75°的方向上,仰角為45°,則此山的高度CD=300$\sqrt{2}$m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|x-1|+|2x+2|-5.
(Ⅰ)解不等式f(x)≥0;
(Ⅱ)已知x∈[-2,$\frac{5}{3}$]時,f(x)∈[a,b],求$\sqrt{at+12}$+$\sqrt{bt}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.化簡:
(1)(2${a}^{\frac{2}{3}}$$^{\frac{1}{2}}$)•(-6${a}^{\frac{1}{2}}$$^{\frac{1}{3}}$)÷(-3${a}^{\frac{1}{6}}$$^{\frac{5}{6}}$)
(2)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4^{\frac{2}{3}}+2\root{3}{ab}+{a}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{a}}$)×$\root{3}{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=ax2+bx+1具有以下性質(zhì):
①對任意實數(shù)x1≠x2,且f(x1)=f(x2)時,滿足x1+x2=2.
②對任意x1,x2∈(1,+∞)上,總有f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$.
則方程ax2+bx+1=0根的情況是( 。
A.無實數(shù)根B.有兩個不等正根C.有兩個異號實根D.有兩個相等正根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知x>1,解不等式$\frac{1}{2}{x}^{2}$-lnx-$\frac{1}{2}{e}^{2}$+1>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若數(shù)列{an}是遞增數(shù)列,并且an=n2-2tn,則t的取值范圍是( 。
A.(-∞,0)B.(-∞,1)C.(0,2)D.(-∞,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知sin($\frac{π}{4}$+α)sin($\frac{π}{4}$-α)=$\frac{1}{6}$,α∈($\frac{π}{2}$,π),求sin4α.

查看答案和解析>>

同步練習(xí)冊答案