8.若數(shù)列{an}是遞增數(shù)列,并且an=n2-2tn,則t的取值范圍是(  )
A.(-∞,0)B.(-∞,1)C.(0,2)D.(-∞,$\frac{3}{2}$)

分析 數(shù)列{an}是遞增數(shù)列,?n∈N*,則an+1>an,化簡解出即可得出.

解答 解:∵數(shù)列{an}是遞增數(shù)列,
∴?n∈N*,則an+1>an,
∴(n+1)2-2t(n+1)>n2-2tn,
化為:$t<\frac{2n+1}{2}$,對?n∈N*都成立.
因此t<$\frac{3}{2}$.
故選:D.

點評 本題考查了數(shù)列的單調(diào)性、不等式的解法、恒成立問題的等價轉(zhuǎn)化方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x)=2sin({ωx+φ})({ω>0,|φ|≤\frac{π}{2}})$,其圖象與直線y=-2相鄰兩個交點的距離為π.若f(x)>1對于任意的$x∈({-\frac{π}{12},\frac{π}{6}})$恒成立,則φ的取值范圍是( 。
A.$[{\frac{π}{6},\frac{π}{3}}]$B.$[{\frac{π}{3},\frac{π}{2}}]$C.$[{\frac{π}{12},\frac{π}{3}}]$D.$({\frac{π}{6},\frac{π}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知|$\overrightarrow{a}$|=6,|$\overrightarrow$|=4,$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{6}$,求
(1)$\overrightarrow{a}$•$\overrightarrow$;
(2)$\overrightarrow{a}$2;
(3)$\overrightarrow$2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知a,b為常數(shù),且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有兩個相等的實數(shù)根.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[t-1,t]時,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求不等式(2x-1)(x+2)≥3x-1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知如圖所示向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$,求作向量$\overrightarrow{l}$,使得$\overrightarrow{l}$=3$\overrightarrow{a}$-$\overrightarrow$+2$\overrightarrow{c}$,并將向量$\overrightarrow{c}$用向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{l}$線性表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.對下圖中各組向量$\overrightarrow{a}$、$\overrightarrow$,求作$\overrightarrow{a}$+$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.a(chǎn)=(2+$\sqrt{3}$)-1,b=(2-$\sqrt{3}$)-1,求(a+1)-2+(b+1)-2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)偶函數(shù)f(x)滿足f(x)=2x-4(x≥0),則{x|f(x-2)<0}=( 。
A.{x|x<-2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|0<x<4}

查看答案和解析>>

同步練習(xí)冊答案