12.已知O是坐標(biāo)原點(diǎn),若點(diǎn)M(x,y)為平面區(qū)域$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$上的一個(gè)動(dòng)點(diǎn),則目標(biāo)函數(shù)z=-x+2y的最大值是( 。
A.0B.1C.3D.4

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:由z=-x+2y得y=$\frac{1}{2}$x+$\frac{1}{2}$z,
作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分):
平移直線y=$\frac{1}{2}$x+$\frac{1}{2}$z,
由圖象可知當(dāng)直線y=$\frac{1}{2}$x+$\frac{1}{2}$z過點(diǎn)A時(shí),
直線y=$\frac{1}{2}$x+$\frac{1}{2}$z的截距最大,此時(shí)z最大,
由$\left\{\begin{array}{l}{y=2}\\{x+y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$,
即A(0,2),代入目標(biāo)函數(shù)z=-x+2y,
得z=0+2×2=4,
∴目標(biāo)函數(shù)z=-x+2y的最大值是4.
故答案為:0.

點(diǎn)評 本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問題的關(guān)鍵,利用數(shù)形結(jié)合是解決問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知不等式組$\left\{\begin{array}{l}{x+3y-6≤0}\\{3x+y-2≥0}\\{x-y-2≤0}\end{array}\right.$表示的平面區(qū)域?yàn)镈,則區(qū)域D的面積為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)f(x)=ax+ka-x(a>0且a≠1)在R上既是奇函數(shù)又是增函數(shù),則g(x)=loga|x+k|的圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)中,在定義域內(nèi)單調(diào)遞增,且在區(qū)間(-1,1)內(nèi)有零點(diǎn)的函數(shù)是( 。
A.y=-x3B.y=2x-1C.y=x2-$\frac{1}{2}$D.y=log2(x+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=2sin(x+\frac{π}{6})-2cosx$.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)若$f(x)=\frac{6}{5}$,求$cos(2x-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若a>0,b>0,則$\frac{{{a^2}+{b^2}+2}}{a+b}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知a=0.70.6,b=0.6-0.6,c=0.60.7,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知ab<0,bc<0,則直線ax+by=c的圖象一定不過第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.“a≥1”是“直線x-y=0與直線ax+y+1=0垂直”的必要不充分條件(在“充要”、“充分不必要”、“必要不充分”、“既不充分又不必要”中,選擇適當(dāng)?shù)囊环N填空).

查看答案和解析>>

同步練習(xí)冊答案