3.點(diǎn)(2,2)關(guān)于直線2x-4y+9=0的對(duì)稱(chēng)點(diǎn)的坐標(biāo)是(  )
A.(1,4)B.(1,2)C.(1,-2)D.(1,-4)

分析 設(shè)對(duì)稱(chēng)點(diǎn)的坐標(biāo)為(a,b),由對(duì)稱(chēng)性可得ab的方程組,解方程組可得.

解答 解:設(shè)對(duì)稱(chēng)點(diǎn)的坐標(biāo)為(a,b),
則由對(duì)稱(chēng)性可知$\left\{\begin{array}{l}{2•\frac{a+2}{2}-4•\frac{b+2}{2}+9=0}\\{\frac{b-2}{a-2}•\frac{1}{2}=-1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=1}\\{b=4}\end{array}\right.$,故對(duì)稱(chēng)點(diǎn)坐標(biāo)為(1,4),
故選:A.

點(diǎn)評(píng) 本題考查直線的一般式方程和對(duì)稱(chēng)性,涉及垂直關(guān)系,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(x)=ax+lnx-$\frac{{x}^{2}}{x-lnx}$有三個(gè)不同的零點(diǎn)x1,x2,x3(其中x1<x2<x3),則(1-$\frac{l{nx}_{1}}{{x}_{1}}$)2(1-$\frac{l{nx}_{2}}{{x}_{2}}$)(1-$\frac{l{nx}_{3}}{{x}_{3}}$)的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知非零向量$\overrightarrow{a}$,$\overrightarrow$,若2|$\overrightarrow{a}$|=|$\overrightarrow$|=|2$\overrightarrow{a}-\overrightarrow$|,cos<$\overrightarrow{a}$,$\overrightarrow{a}+\overrightarrow$)>=$\frac{2\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)函數(shù)f(x)=xex-ax+a,若存在唯一的整數(shù)x0,使得f(x0)<0,則實(shí)數(shù)a的取值范圍是( 。
A.[-$\frac{2}{3{e}^{2}}$,$\frac{1}{2e}$)B.[$\frac{2}{3{e}^{2}}$,$\frac{1}{2e}$)C.[-$\frac{1}{{e}^{2}}$,$\frac{1}{e}$)D.[$\frac{1}{{e}^{2}}$,$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{3x-1,x<1}\\{2{x}^{2},x≥1}\end{array}\right.$,則滿(mǎn)足f(f(a))=2(f(a))2的a的取值范圍為[$\frac{2}{3}$,+∞)∪{$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,a4+a5+a6+a7+a8=25,S12=54.
(1)求an;
(2)求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.?dāng)?shù)列{an}滿(mǎn)足an-an+1=anan+1(n∈N*),數(shù)列{bn}滿(mǎn)足bn=$\frac{1}{{a}_{n}}$,且b1+b2+…+b9=90,則b4•b6( 。
A.最大值為99B.為定值99C.最大值為100D.最大值為200

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若cosα=-$\frac{5}{13}$,則sin(π一α)=±$\frac{12}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.有小于180°的正角,這個(gè)角的9倍角的終邊與這個(gè)角的終邊重合,求這個(gè)角的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案