20.要測量電視塔AB的高度,在C點測得塔頂?shù)难鼋鞘?5°,在D點測得塔頂?shù)难鼋鞘?0°,并測得水平面上的∠BCD=120°,CD=40m,則電視塔的高度是( 。
A.30mB.40mC.$40\sqrt{3}$mD.$40\sqrt{2}$m

分析 設(shè)出AB=x,進而根據(jù)題意將BD、DC用x來表示,然后在△DBC中利用余弦定理建立方程求得x,即可得到電視塔的高度.

解答 解:由題題意,設(shè)AB=x,則BD=$\sqrt{3}$x,BC=x
在△DBC中,∠BCD=120°,CD=40,
∴根據(jù)余弦定理,得BD2=BC2+CD2-2BC•CD•cos∠DCB
即:($\sqrt{3}$x)2=(40)2+x2-2×40•x•cos120°
整理得x2-20x-800=0,解之得x=40或x=-20(舍)
即所求電視塔的高度為40米.
故選B.

點評 本題給出實際應用問題,求電視塔的高度.著重考查了解三角形的實際應用的知識,考查了運用數(shù)學知識、建立數(shù)學模型解決實際問題的能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.設(shè)向量$\overrightarrow a=({m,2}),\overrightarrow b=({1,m+1})$,且$\overrightarrow a$與$\overrightarrow b$的方向相反,則實數(shù)m的值為( 。
A.-2B.1C.-2或1D.m的值不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.曲線$y=\frac{{{x^2}+4}}{x}$的一條切線l與y=x,y軸三條直線圍成三角形記為△OAB,則△OAB外接圓面積的最小值為( 。
A.$8\sqrt{2}π$B.$8(3-\sqrt{2})π$C.$16(\sqrt{2}-1)π$D.$16(2-\sqrt{2})π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=e-x-|lnx|的兩個零點分別為x1,x2,則( 。
A.0<x1x2<1B.x1x2=1C.1<x1x2<eD.x1x2>e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)$f(x)=2ln(x+1)+\frac{1}{2}m{x^2}-(2m+1)x$
(Ⅰ)若x=1是f(x)的極值點,求f(x)的極值;
(Ⅱ)若f(x)有兩個極值點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知平面向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,且($\overrightarrow{a}$+λ$\overrightarrow$)⊥(2$\overrightarrow{a}$-$\overrightarrow$),則實數(shù)λ的值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知$f(x)=\left\{\begin{array}{l}f(x+1),(x<1)\\{3^x}\;,\;\;(x≥1)\end{array}\right.$,則f(-1+log35)=( 。
A.15B.$\frac{5}{3}$C.5D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還.”其意思為:“有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地,請問第三天走了( 。
A.60里B.48里C.36里D.24里

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在△ABC中,角C=60°,tan$\frac{A}{2}$+tan$\frac{B}{2}$=1,則tan$\frac{A}{2}$•tan$\frac{B}{2}$=1-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步練習冊答案